
Foreword

Since 77 years viscose fibers are produced in Lenzing. Meanwhile almost one million tons of 
man-made cellulose fibers are produced on our 6 sites worldwide. Recently, we have celeb-
rated the 50th birthday of Lenzing Modal® fiber development. TENCEL® is the third and 
newest generation of man-made cellulose fibers. It is based on the NMMO process and ma-
nufactured at 4 of 6 sites. The required pulp is mainly produced in our two biorefineries based 
on beech and spruce wood. This pulp production is linked with the production of essential 
base chemicals like furfural, acetic acid, soda, xylose as well as energy.
These processes are under permanent development and optimization strengthening our inter-
national innovation and quality leadership. For successful process innovation, monitoring of 
process streams and development of new sensors and analytical techniques are essential. 
Since 2010 we expanded our potential with our partner in the research network PAC- “Pro-
cess Analytical Chemistry”.
Due to the research network PAC we do not only have access to experts at partner universities and institutes. A co-operation with 
industrial partners outside of our business gives access to new insights and generates new ideas for our own challenges even faster 
and better. 
The topics we investigate include the development of new sensors and analysers as well as the development of evaluation methods 
and investigation of inhomogeneities in the process. In this issue only a few examples of these activities are described. In future 
we will follow up on these topics, which contribute to secure our technology leadership. 

Dr. Andrea Borgards
Global Director Process Innovation Lenzing AG Lenzing, December 2015

Vorwort

Lenzing produziert an 6 Standorten fast eine Million Tonnen man-made Cellulosefasern. Seit nunmehr 77 Jahren werden in 
Lenzing Viskosefasern produziert; kürzlich feierten wir den 50sten Geburtstag der Entwicklung der Lenzing Modal®. Als 
dritte und neueste Generation der man-made Cellulosefasern wird die TENCEL® -Faser, basierend auf dem NMMO-Prozess, 
mittlerweile an 4 der 6 Standorten erzeugt. In unseren beiden Bioraffinerien wird der überwiegende Teil des dazu benötigten 
Zellstoffs aus Buche oder Fichte hergestellt. Dies ist  gekoppelt mit der Erzeugung von wertvollen Basischemikalien wie 
Furfural, Essigsäure, Soda, Xylose sowie von Energie.    
Die dazu notwendigen Prozesse sind einer ständigen Weiterentwicklung und Optimierung unterworfen, um die internationa-
le Innovations- und Qualitätsführerschaft zu manifestieren. Zu einer erfolgreichen Prozessentwicklung gehören die Überwa-
chung der Prozessströme und die Entwicklung neuer Sensoren und Analysentechniken. Seit 2010 erweitern wir mit unseren 
Partnern im Forschungsnetzwerk PAC – „Process Analytical Chemistry“ unsere diesbezüglichen Möglichkeiten.
Durch das Forschungsnetzwerk PAC haben wir nicht nur Zugang zur Expertise an den Partneruniversitäten und –instituten. 
Auch die Kooperation mit branchenfremden Firmen trägt dazu bei, neue Sichtweisen kennenzulernen und daraus neue Ideen 
zu generieren, um eigene Fragestellungen schneller und besser beantworten zu können. 
Die Themen reichen von der Entwicklung neuer Messgeräte und Sensoren über die Ausarbeitung verbesserter Auswerteme-
thoden bis hin zur Erforschung der Ursachen von im Prozess auftretenden Inhomogenitäten. Im vorliegenden Band ist nur ein 
kleiner Auszug dieser Aktivitäten angeführt. Auch in Zukunft werden wir diese Themen weiter verfolgen, denn sie helfen uns, 
unsere Technologieführerschaft zu sichern.

Dr. Andrea Borgards
Global Director Process Innovation Lenzing AG  Lenzing, Dezember 2015
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Editorial

Dear reader!
This special issue of the “Lenzinger Berichte” covers an increasingly important topic for chemical industry and shall give you 
a little insight into the Austrian research network on Process Analytical Chemistry – PAC. We want to make you curious to 
explore the content of this “PAC-issue” in detail!
At the beginning of this century a new trend was emerging in the fields of chemical and biochemical industry. The trendy 
topic was “process intensification”. In the following years, this topic was picked up in various countries, by different players 
and in a variety of forms. The Austrian way was, to develop a concept for a research network to bundle the expertise of aca-
demic partners and companies. 
One of the companies involved in these activities from a very early stage on, was Lenzing AG. They are still a very active and 
valuable partner in the research network – and this is why we are able to present this special issue today.
Those joint efforts led, in the first stage, to a proposal for a research project: the proposal was submitted in the year 2009 and 
granted early in 2010. Under the scope of the Austrian funding scheme COMET (Competence Centers for Excellent Techno-
logies) the project PAC (Process Analytical Chemistry – Data Acquisition and Data Processing) represented a perfect fit. 
During four years (2010 – 2014) a consortium of 17 partners (10 companies and 7 scientific partners) conducted research and 
development for the improvement of process analytical technologies (PAT) and the utilisation of measurement data to allow 
for real-time control and optimization of processes.
The involved companies covered a large variety of industrial branches, from base chemicals to pharmaceuticals, from visco-
se fibers to steel industry, from beer brewing to the production of rubber.
In 2014 new horizons had to be targeted: a follow-up project was initiated by most of the former partners and some new ones. 
Thus, a consortium of now 19 partners (11 industrial partners and 8 university institutes and research companies) started a 
cooperation under the project-acronym imPACts: Industrial methods for Process Analytical Chemistry – From measurement 
technologies to information systems.
The project imPACts is once again a funded project in the COMET-program, administered by the FFG, the Austrian Research 
Promotion Agency. The scope was greatly extended: new analytical technologies are developed and applied within the pro-
ject, special attention is paid to understand complex chemical processes, e.g., multi-phase processes and not only is the 
measured data processed by advanced chemometric algorithms, but also will those chemometric models be processed in a 
newly developed framework, called CMLCM: Computational Model Live-Cycle Management.
The project imPACts will run until 2018. We have an ambitious research agenda for this time. We invite you, to take your time 
and browse through some of the topics we are dealing with right here in this issue of “Lenzinger Berichte”!
Beyond imPACts, the acronym PAC has persisted as the name for the Austrian research network for process analytical tech-
nologies. It is the clear long-term target for the members of this network to keep on working on the topics of process analyti-
cal technologies (PAT) and process intensification. 
However, we are convinced, that a sustainable development for the real benefit of the process industry and chemical industry 
can in the end only be done on an internationally networked level. Neither the big challenges nor the big players are confined 
to borders of countries.
PAC as the Austrian network teams up with the Austrian GÖCH, the German DECHEMA and the Arbeitskreis Prozessana-
lytik as well as with UK based CPACT. In 2014, thanks to the SPIRE-PPP in Horizon 2020, a European project called ProPAT 
was established led by the Spanish company IRIS. ProPAT aims to develop novel sensors and analysers as well as a global 
control system for closed-loop process control. Its underlying goal of application and outreach has a very similar scope to 
PAC and it is a perfect partner for PAC on an European level. Together, we will be able to bundle efforts for some topics to 
achieve increased output and outreach; we will meet, discuss and exchange in order to learn from each other; we will coope-
rate and aim to issue joint publications!

Lenzinger Berichte – 
PAC-special-issue Autumn 2015
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And what is it all about?

We are working to enable the process industry and especially the chemical industry, to have closer control over their processes. 

Closer control – enabled by PAC – means to us: 
 real-time measurements for all relevant parameters; 
 complete models of processes; 
 a wide variety of measurement technologies at the industry’s fingertips; 
 access by soft-sensor technologies to parameters that cannot be measured directly;
 outstanding chemometric modelling concepts, to give reliable chemical information from physical measurements;
 models never get outdated, thanks to new methods from our CMLCM-toolbox; 
 processes can always be run on absolute optimum; 
 less downtime, more yield, less energy-, time- and raw material consumption; 
 lowest production costs; 
 and – the one thing always most important at the end of the day: always top quality for your customers.

Go on, read about it – either in this special issue of the “Lenzinger Berichte” or on our website www.k-pac.at.   

We hope, you will enjoy to get some insights in work conducted in the PAC-network!
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Markus Brandstetter
imPACts – Scientific manager

Thomas Röder
Chairman of the imPACts board
Lenzinger Berichte – Editor in chief

Robert Holzer
imPACts – Consortium manager



In	Memoriam	Prof.	Dr.	Burkart	Philipp

Shortly after his 90th birthday Prof. Burkhart Philipp passed away in Berlin on the 9th of March 2015. 
Burkart Philipp was born in Pirna/Saxonia and studied chemistry at the TH (Technical University) 
Dresden from 1947 to 1950. He received his PhD (Dr. rer. nat.) under the supervision of K. Schwabe 
in 1952. Since 1953 he had been working at the former Institute of Fiber Research (IFF) of the German 
Academy of Sciences in Teltow-Seehof, where he started his carrier as an assistant under E. Correns. 
Later he became a department head and finally the director of the Institute (1969 to 1981 and again 
1990 to 1992). At the time the Institute experienced a remarkable broadening of the scientific profile 
and was renamed Institute for Polymer Chemistry (IPOC) in 1972, belonging to the East German Aca-
demy of Sciences (AdW der DDR). After his habilitation (Dr. habil.) in 1956 at the TH Dresden he has 
been appointed to a professorship of the AdW der DDR and became an adjunct professor for chemistry 
and polymers, teaching first at Magdeburg and later at the Technical University of Dresden. 

Professor B. Philipp has rendered outstanding services to the IPOC-Institute also during the times of 
the political changes in the 1990s in particular with regard to the re-organization of the institute. He 
was re-elected as the director in 1990 by the vote of an independent council of IPOC scientists and 
held this position until 1992. Under his guidance the various research activities of IPOC were scree-
ned, bundled and transformed into the appropriate research organizations already  existing in West 
Germany. The Max-Planck-Institute of Colloids and Interfaces as well as the Fraunhofer-Institute for 
Applied Polymer Research IAP became the largest of the successive Institutes, both nowadays located 
at Potsdam-Golm. Well into old age, Prof. Philipp has been personally engaged in the work of the Ins-
titute for Biomaterials Research of the Helmholtz-Center Geesthacht, the largest Institute remaining in 
Teltow-Seehof. The model-like successful integration of a large East-German Institute into the scienti-
fic landscape of the unified Germany was an extraordinary achievement of B. Philipp which has been 
recognized by the Federal Cross of Merit (Bundesverdienstkreuz erster Klasse) in 1993. 

Cellulose research and polyelectrolytes were the major scientific fields of B. Philipp. Together with 
his co-workers he published more than 500 papers contributing significantly to the chemistry and 
technology of the viscose process, the derivatization of cellulose at homogeneous and heterogeneous 
conditions, the dissolution of cellulose in unconventional solvents, the degradation of cellulose and to 
the structure and reactivity of this natural polymer. In particular during the late years of his career he 
worked on regioselective functionalization of cellulose. Furthermore, he dealt with analytics, structure 
formation, and applications of polyelectrolytes. In a remarkable manner he used and supported inter-
disciplinary approaches between chemistry, physics, and engineering. His scientific inheritance also 
covers a number of textbooks which he initiated or promoted as a co-author, including „Grundlagen 
der makromolekularen Chemie“ (Philipp and Reinisch; Akademie-Verlag, 1976), „Polyelektrolytes“ 
(Dautzenberg, Jaeger, Kötz, Philipp, Seidel, Stscherbina; Hanser, 1994) as well as the two-volume 
standard textbook „Comprehensive Cellulose Chemistry“ (Klemm, Philipp, Th. Heinze, U. Heinze, 
and Wagenknecht; Wiley-VCH, 1998). 

IV



In addition to his outstanding scientific achievements he was a demanding and supporting mentor for 
many young scientists and passed on his experience and the interest in the fascinating and sustainable 
polymer cellulose. Besides a large number of PhD-students, more than 10 appointments to regular and 
honorary professorships originated from his school. 

Professor B. Philipp was a member of the East-German Academy of Sciences and received, both 
before and after the German reunification, many awards. He became honorary member of the Kollo-
idgesellschaft (1992), received the Hermann-Staudinger Award of the GDCH (1994), the International 
Schwarza-Lyocell-Award (2000), among  others. He was an active member of ZELLCHEMING and 
was one of those who shaped the expert committee of cellulose and cellulose derivatives including 
the “Cellulosechemiker-Rundgespräch” (Cellulose symposium) for many decades. Already in 1981 he 
was awarded the Alexander-Mitscherlich-Medal of ZELLCHEMING.

After retirement, despite a serious and progressive disease leading to the loss of his eyesight, he lost 
neither his mental and intellectual activity nor his open mindedness. In a remarkable way his wife 
Helga assisted him all the time and helped him to manage his health handicap. Well into his old age, 
he had been expressing his views kindly and frankly both to the ZELLCHEMING expert group and 
the Berlin-Brandenburg Association for Polymer Research. For many of his co-workers and students 
he was a guide and role model with regard to his optimistic and positive way of life, his daringness, 
efficiency, tenacity, as well as his straightforwardness. 

With B. Philipp we lost a great scientist, an outstanding scientific manager, a gifted teacher, and an 
esteemed colleague.

Prof. Dr. Hans-Peter Fink, Potsdam-Golm
Prof. Dr. Klaus Fischer, Dresden
Prof. Dr. Thomas Heinze, Jena

 reprint from: ipw, No. 4-5/2015, p 48, by courtesy of the Association of Chemical Pulp and Paper 
Chemists and Engineers (ZELLCHEMING Association, Carl-Zeiss-Str. 3, 64331 Weiterstadt, Ger-
many).

V



11

A New Sensor System Employing a Mid-infrared 
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Introduction

Quartz-enhanced Photoacoustic 
Spectroscopy (QEPAS)
Laser-based trace gas spectroscopy is of big interest 
for a widespread field of applications, including envi-
ronmental monitoring, medical diagnostics or indust-
rial process control. Strong fundamental absorption 
features of chemical species in the gas phase can be 
found in the mid-infrared (mid-IR) region, which can 
be accessed by quantum cascade lasers (QCLs). 
QCLs provide a complete coverage of the mid-IR re-
gion and have been demonstrated to be very suitable 
for a large variety of spectroscopic techniques. [1 - 4] 
A trace gas sensing technique featuring unique pro-
perties is called quartz-enhanced photoacoustic spec-
troscopy (QEPAS). [5, 6] It is based on the principle 
of photoacoustic spectroscopy (PAS) where the ab-
sorption of modulated optical radiation by the analyte 
leads to a periodic heating of the sample. The perio-
dic heating of the sample in turn causes a periodic 
thermal expansion, which leads to a periodic pressure 
change in the media. In this way pressure waves are 
generated and can be detected by an acoustic transdu-
cer. Conventional PAS employs sensitive micropho-

nes placed into resonant cells. QEPAS, however, uses 
a quartz tuning fork (QTF) as a sharply resonant pie-
zoelectric acoustic transducer with an extremely high 
quality factor, instead of a broadband electric micro-
phone and a relatively low quality-factor resonant 
photoacoustic cell. The QTF is a commercial mass 
product used as frequency standard in clocks and 
watches resonating at 32,768 (= 215) Hz in vacuum. 
The QTF is a low-loss piezoelectric element and 
therefore converts its deformation, caused by genera-
ted pressure waves, into separation of electrical char-
ges that can be measured either as voltage or current. 
Due to the small size of the QTF the QEPAS tech-
nique facilitates the measurement of trace gases in an 
ultra-small acoustic detection module (ADM) with a 
total effective sample volume of only a few mm³ in 
contrast to classical PAS. Further merits of QEPAS 
are that only the fundamental symmetric vibration of 
the QTF is piezoelectric active, i.e. when the two 
prongs bend in opposite directions in the plane of the 
QTF. That results in excellent environmental noise 
immunity, because sound waves from distant acoustic 
sources tend to move the QTF prongs in the same di-

Abstract 

A compact gas sensor system based on quartz-enhanced photoacoustic spectroscopy (QEPAS) employing a con-
tinuous wave (CW) distributed feedback quantum cascade laser (DFB-QCL) emitting mid-infrared (mid-IR) 
radiation at 4.59 µm was developed for detection of carbon disulfide (CS2) at sub-ppmv concentration levels. The 
work reports the suitability of the sensor system for monitoring CS2 in process streams at the rayon industry, 
where this molecule is used in big amounts to produce regenerated man-made cellulose fibers.
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rection, thus resulting in no electrical response. Moreo-
ver, the QTF is a rugged element which possesses a very 
large dynamic range. The detected QEPAS signal is 
directly proportional to the absorption coefficient per 
unit concentration of the target species, the concentrati-
on of the target species, the laser power, the quality-
factor of the acoustic resonator and is inversly  propor-
tional to the QTF frequency ƒ0. [7] An enhancement of 
the QEPAS signal can be achieved when two metallic 
tubes acting as a micro-resonator (mR) are added to the 
QTF sensor architecture. Figure 1 shows a typical QE-
PAS arrangement where the laser beam is focused bet-
ween the prongs of the QTF and the acoustic resonator 
tubes in order to probe the acoustic waves and achieve 
the highest electric signal. [8] In addition, the detected 
QEPAS signal is improved for slow relaxing molecules 
by water vapor, which is known as an efficient catalyst 
for vibrational-translational (V-T) relaxation processes 
in the gas phase. [9]

The industrial production of fibers out of the natural 
raw material wood (man-made cellulose fibers) is a 
chemical-technological process that proceeds in multi-
ple steps. Sulfur containing gases such as carbon disul-
fide (CS2) and dihydrogen sulfide (H2S) are generated 
during the spinning process. The aim of this work was 
the development of a portable gas sensor system capa-
ble for detection of CS2 in the process stream of fiber 
production down to low ppmv concentration rages. The 
applicability of the CS2 QEPAS gas sensor for on-line 
measurements was tested at Lenzing AG (Lenzing, 
Austria). Furthermore, the results obtained were com-
pared with a method for CS2 detection based on photo-
ionization (PID). 

Wavelength Modulation Spectroscopy
Modulation of the output wavelength of a diode laser can 
be easily accomplished by modulation of the injection 
current. This tuning mechanism is very rapid, whereby 

modulation frequencies up to hundreds of MHz can be 
applied. The modulation of the injection current results 
in modulation of the laser frequency and is always ac-
companied to some extent by modulation of the amplitu-
de, as the injection current also controls the optical out-
put power. In this content amplitude modulation 
generally acts as an undesirable effect that distorts the 
signal and is referred to as residual amplitude modulati-
on (RAM). Modulation techniques using frequencies 
that are much smaller than the half-width of the emplo-
yed laser source are denoted as wavelength modulation 
spectroscopy (WMS). [10] The interaction of the target 
species with the modulated light leads to the generation 
of signals at the modulation frequency and various har-
monics. The analytical signal can then be detected at a 
suitable harmonic of the modulation frequency, which in 
most cases is the second harmonic, by use of lock-in am-
plifiers. [11] One important advantage of modulation 
techniques is to shift the detection to higher frequencies 
so that 1/ƒ noise is reduced. In case of PAS detection an 
acoustic signal only evolves when light is being absor-
bed and no signal is ideally created in the absence of the 
analyte. Application of WMS thus efficiently allows to 
get rid of any spurious acoustic signal providing an off-
set free signal at harmonic detection. [12]

Experimental

CW-DFB-QCL	Performance	and	CS2 
Wavelength Selection
In this work a high heat load (HHL) packaged conti-
nuous wave (CW), distributed feedback quantum cas-
cade laser (DFB-QCL) (HHL-14-45, AdTech optics) 
emitting at ~ 4.59 µm was employed as a compact and 
powerful light source generating up to more than 75 
mW output power. The DFB-QCL operated at a single 
mode frequency and could be tuned over a few waven-
umbers by varying the QCL either by temperature or 
injection current. 
Figure 2 shows a measured absorption spectrum of CS2 
within the spectral region from 6500 to 600 cm-1 [13] 
with a blow-up of the spectral region from 2200 cm-1 to 
2140 cm-1 which was chosen for targeting CS2. The 
strongest absorption bands of CS2 are located in the 
spectral region between 1550 cm-1 and 1500 cm-1, with 
the strongest line centered around 1541.5 cm-1. Unfor-
tunately, no DFB-QCL covering this line was commer-
cially available back in 2012 when this project was 
started. In order to perform sensitive CS2 QEPAS mea-
surements the absorption line centered at 2178.69 cm-1 
(Figure 2, inset, red arrow) and a QCL operating tem-
perature of 19.45 °C was selected, because of its relati-
ve high line intensity and no CO and H2O interference 
as well as high laser power. 

Figure 1. Typical QEPAS spectrophone configuration.
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QEPAS Sensor System Architecture and 
Performance
The optical platform of the QEPAS sensor is schemati-
cally depicted in Figure 3a. It employs a high heat load 
packaged CW-DFB-QCL as light source and the QE-
PAS gas cell, consisting of the QTF and acoustic reso-
nator tubes. A reference cell filled with 30 % of CS2 in 
N2 at 75 mbar and a MCT-detector located after the 
ADM were used as a reference channel in order to lock 
the laser frequency to the center of the selected CS2 
absorption line. The sensor platform is based on 2ƒ 
wavelength-modulation spectroscopy (WMS) and QE-
PAS detection. The QEPAS based sensor system con-
sists of the optical setup, the gas line with metering 
valve, QEPAS cell (ADM), pressure controller, micro-

vacuum pump and sensors (humidity, pressure, tempe-
rature), electronics, main board and display for QCL 
control, data acquisition and processing (Figure 3b). 
In order to implement the 2ƒ-WMS technique the DFB-
QCL emission wavelength was tuned across the CS2 
absorption line centered at 2178.69 cm-1 by applying a 
ramp to the laser current and modulating it sinusoidally 
at half of the QTF resonance frequency 
(ƒmod=ƒ0/2=16.384 kHz). Once the optical energy is 
absorbed by the gas, the acoustic wave is generated and 
detected by the QTF. The induced QTF piezoelectric 
signal was enhanced by an ultra-low noise trans-impe-
dance amplifier (TA) with a 10 MΩ feedback resistor. 
The amplified QTF signal was demodulated at ƒ0, using 
an internal lock-in amplifier with a time constant set to 
1 sec. A CS2 reference cell and a photodetector signal 
demodulated at 3ƒ were used in order to lock the laser 
frequency to the center of the selected CS2 absorption 
line.
The presence of H2O vapor influences the QEPAS res-
ponse to CS2 by enhancing the V-T energy transfer rate 
and thus increasing the PA signal. The dependence of 
H2O on the response of the QEPAS was acquired as a 
function of the H2O concentration. A ~3.2 times impro-
vement of the QEPAS signal was observed when the 
water content of the analyzed gas mixture was 2.6 %. 
The sensors sensitivity to the concentration of the trace 
gas component in a specific gas mixture is also a func-
tion of the sample pressure. Moreover, the laser wave-
length modulation depth m must be optimized for a 
certain pressure in order to achieve highest 2ƒ WMS 
signal amplitude. Optimum working pressure and mo-
dulation depth for a reference gas mixture moisturized 
with 2.3 % H2O was found to be p = 75 mbar and m = 
0.026 cm-1. Measurements were carried out with conti-
nuous gas flow through the ADM. Constant pressure 
and gas flow within the ADM was accomplished by 

Figure 2. Measured spectra of CS2. [13]

Figure 4. Dependence of 2ƒ WMS QEPAS signal as a function of CS2 
concentration.

Figure 3. (a) Schematic diagram of the QEPAS based gas sensor 
architecture employing a CW-DFB-QCL, (b) QEPAS system suitable 
for gas monitoring at industrial environment.
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means of the micro-vacuum pump, pressure controller 
and metering valve. Sensitivity and linear response of 
the QEPAS sensor was investigated by performing 
quantitative measurements of CS2 in humidified N2 
within the range from 0 to 10 ppmv at optimum opera-
tion conditions. Excellent linearity between signal am-
plitudes and CS2 concentrations was observed and a 
sub-ppmv detection limit was determined for the QE-
PAS based sensor system (Figure 4). 

Performance Test at Lenzing AG 
(Lenzing, Austria)
To demonstrate the suitability of the QEPAS system for 
continuous detection of CS2 directly out of the process 
stream the developed system was installed at Lenzing 
AG for a few days. The QEPAS sensor does not show 
any spectroscopic interference at the selected CS2 ab-
sorption line, thus the sample gas could be extracted di-
rectly out from the gas stream without any pre-treatment. 
QEPAS detection was carried out at optimum working 
conditions in scan and locked mode. In the scan mode, 
the DC component of the QCL current is slowly tuned so 
that laser frequency sweeps over the desired spectral ran-
ge in order to acquire spectral information of the gas 
sample. Data recorded with the scan mode were used to 
verify the selectivity of the sensor in the chosen spectral 
range. In the locked mode, the QCL frequency is locked 
to the center of the CS2 absorption line at 2178.69 cm-1 
by means of a reference cell and a photodetector detector 
signal demodulated at 3ƒ in order to avoid any laser drift. 
Influence of varying water contents was compensated by 
simultaneous measurement of the moisture by a humidi-
ty sensor. As a reference a photoinization detector (SPID, 
Analytical Control Instruments Gmbh, Berlin, Germa-
ny) was used. The applied PID uses a 10.6 eV cathode 
lamp to ionize molecules, which are then detected by an 
electrode. That means all vaporous organic compounds 
can be detected if they are hit by a photon with higher 
energy then the minimum ionization energy of the mole-
cule. In this way a broad range of volatile organic com-
pounds can be detected by a PID. Because of the cross-
sensitivity to a number of gases, selective measurements 
of CS2 can only be performed after a pre-treatment of the 
sample. The primary interferent with PID detection at 
the observed process streams was H2S. In order to per-
form selective measurements of the target gas the sample 
was purged through a zinc acetate solution to remove 
H2S before PID detection. Disregarding increased 
maintenance requirements at industry, the pre-treat-
ment raises the sample gas volume, which makes it 
impractical to detect fast concentration changes of the 
target molecule. 

Figure 5 shows exemplary results of a parallel QEPAS 
and PID measurement of CS2 over a few hours. The 
diagram shows that the concentration trend of both sys-
tems coincides. The PID sensor, however, is not as well 
capable to detect fast concentration changes and does 
show a retarded detector response compared to the QE-
PAS system. This behavior is due to the bigger sample 
gas volume generated by the sample pre-treatment. 

Conclusions

The principles of a new sensor system for CS2 based on 
mid-infrared quartz-enhanced photoacoustic spectro-
scopy (QEPAS) have been successfully developed and 
tested in a research laboratory environment at TU 
Wien. Subsequently, a rugged and portable sensor sys-
tem for CS2, providing sensitive and selective measure-
ments of CS2 molecules in the industrial gas streams 
with fast detector response, was developed. This porta-
ble sensor system was successfully tested at Lenzing 
AG during a measurement campaign in 2014. Compa-
rison with the established reference method based on 
photoionization detection (PID) revealed a clearly fas-
ter response of the new QEPAS sensor as well as com-
parable concentration results. Important advantages of 
the developed QEPAS sensor system are seen in its 
high selectivity, which allows continuous direct pre-
treatment free measurement of process gases. This not 
only eliminates additional maintenance, it also guaran-
tees selective concentration readings in addition to a 
fast response. Because of  the generic nature of the pro-
posed sensor system, other analytes can be measured, 
too always in case a ro-vibrational line of the analyte 
can be targeted by a CW operated DFB-QCL. 

Figure 5. Comparison PID versus QEPAS, black: QEPAS measure-
ment directly probing sample gas from the process stream, red: PID 
measurement of pre-treated gas sample.
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Introduction

In modern biochemical production processes, a large 
number of different process parameters can be measu-
red and controlled [1]. Therefore, many different sen-
sors are integrated into bioreactors to monitor the actu-
al state and transfer the data to the process control 
system. New sensors provide better data or even new 
independent data that were not available thus far, al-
lowing further improvement of the production process 
control and leading to higher efficiency, better process 
understanding, and therefore higher product quality 
[2]. Inline viscosity sensors offer different possibilities 
in biochemical processes. Viscosity is an additional 
property that is not measurable with other established 
methods, such as infrared spectroscopy. Special sen-
sors as resonant viscosity sensors offer additional infor-
mation due to their working principles, providing mea-
surements in new rheological regimes (compared to 
rheometers used in laboratories) or particle classifica-
tion [3].

Materials and Methods

Sensor Principle
The used sensor is the so called U-shaped wire sensor 

[4]. It consists of three parts: a tungsten wire bend in a 
U-shape, two brass sockets to hold the tungsten wire and 
a neodymium permanent magnet to provide a magnetic 
field in the region of the tungsten wire (Fig. 1 & Fig. 2).

Abstract 

Inline monitoring of bioprocesses plays an important role for modern manufacturing processes. Higher produc-
tion rates and better product quality can be reached by tightly monitoring and controlling the progress of the 
biochemical reactions. The performance of the process control system crucially depends on the quality and on 
the quantity of (independent) process parameters provided by different types of sensors. New sensing principles 
increase the knowledge on the biochemical reactions and open up opportunities for specific interventions. In this 
contribution we present the sensor development process for a resonant inline viscosity measurement system 
based on three U-shaped wire sensors. We outline the sensor principle, the physical effects, the prototype device 
and first measurement results obtained in a bio-fermentation process.
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Figure 1. U-shaped Wire sensor consisting of a tungsten wire mounted 
on two brass sockets (the permanent magnet is visible in Fig. 2).
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Enforcing an AC current flowing through the wire, an 
alternating force (with the same frequency) is acting on 
the tungsten wire (Lorentz force). This force leads to a 
periodic oscillation of the wire. The motion of the wire in 
a magnetic field leads to an induced voltage proportional 
to the velocity of the wire and the magnetic field (motion 
induction). By performing a frequency sweep around the 
mechanical resonance frequency associated with this U-
shaped beam and measuring the induced voltage, the 
characteristics of the system and specially the exact reso-
nance frequency ƒr and the quality factor Q can be obtai-
ned. Immersing the sensor into a viscous fluid, these two 
values are changed depending on the viscosity-density 
product of the fluid [4].

Measurement Principle
The working principle of resonant viscosity sensors is 
based on a surface performing sinusoidal (often in-pla-

ne) motions in a viscous fluid. Due to the viscosity and 
the density of the fluid, an attenuated shear wave is gene-
rated at the surface which penetrates into the liquid ( [5] 
& [6]).

The penetration depth δ of the shear wave is dependent 
on viscosity, density and oscillation frequency [7]:

    δ=2𝜂𝜌𝜔, (1)

where δ, 𝜂, 𝜌 and 𝜔 denote penetration depth, dynamic 
viscosity, density, and radian oscillation frequency, res-
pectively.
Fig. 4 shows the penetration depth described in (1) for 
different oscillation frequencies. This information is es-
pecially interesting if particles or contaminations of the 
measured fluid are present.

The standard procedure for measurements is to perform 
a frequency sweep with the sensor and measure the fre-

LENZINGER BERICHTE 92 (2015)     06 – 11

Figure 2. Schematic for the working principle. The sensor is placed in 
a B-field B generated by a permanent magnet. An AC current I is driven 
through the tungsten wire and due to the current in a magnetic field a 
force F is acting on the wire.

Figure 3. A surface oscillating in x- or y-direction causes, due to the 
viscosity and density of the fluid, an exponentially damped shear wave 
penetrating into the liquid [6].

Figure 4. Illustration graph for the penetration depth over oscillation 
frequency for constant viscosity and density.

Figure 5. Frequency response of a resonant (in-plane vibrating plate) 
viscosity sensor measuring different fluids with different viscosities. 
The higher the viscosity, the lower is the quality factor and also the 
resonance frequency [8].
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quency response. Then the resonance frequency ƒr and 
the quality factor Q are extracted from the data. Fig. 5 
shows a series of measurements for different fluids (from 
ethanol, with the lowest viscosity of 1.1 mPa s, to deca-
nol, with 12 mPa s). Note that the resonance frequency ƒr 
and also the quality factor Q are decreasing with increa-
sing viscosity η. As a last step a calibration measurement 
set is used to calculate back to the viscosity. If only the 
detection of changes is of interest, the last step is not 
necessary.
Due to the frequency dependency of the penetration 
depth of the shear wave, additional measurement appli-
cations are feasible. Resonant viscosity sensors probe 
only a very thin fluid layer atop of their surface. Particles 
distributed in a liquid influence the macroscopic viscosi-
ty, but effectively interact with the shear wave only if the 
size of the particle is small compared to the penetration 
depth (Fig. 4 & Fig. 6, [7]). If more than one resonant 
sensor is used, the gained viscosity values are depending 
on the particle sizes immersed into the fluid. Sensors 
with lower oscillation frequencies sense large and small 
particles however sensors with higher oscillation fre-
quencies are only influenced by small particles.

For particle detection, very accurate measurements are 
necessary.

Setup
For the probe head itself three U-shaped wire sensors 
were integrated into a stainless steel casing (see Fig. 7). 
Each U-shaped wire is soldered on two brass bars and 
the brass bars are directly connected to the readout 
cables. A four wire connection reduces the influence of 
the cables. In front of the U-shaped wires with a distant 
of 1 mm a cylindrical neodymium permanent magnet is 
placed to provide the magnetic field required for the ex-
citation and the readout. Due to its low impedance, the 
sensor is not affected by the conductivity of the surroun-
ding fluid. This qualifies the sensor also for measure-
ments in highly conductive fluids.

One of the most important parts of the sensor probe is the 
sealing. During the bioreactor sterilization process pres-
sures up to 2 bar and temperatures over 121 °C are 
reached. Therefore the holding of the brass bars is made 
out of PEEK and is sealed to the casing by two special 
high temperature O-rings made of VITON. To withstand 
the high pressure the holding is also fixed to the casing 
by a bolt which runs through the PEEK material and is 
welded on both sides to the casing. This form-locking 
manufacturing technique provides the necessary robust-
ness for the intended purpose.

Actuation	and	Readout
A professional audio interface for PCs was used for the 
actuation signal generation and also for the readout of 
the output signal. This is possible due to the frequency 
range of the mechanical resonators, which lies in the kHz 
regime. Audio interfaces offer a lot of advantages in this 
case, e.g., high sampling rate of 192 kHz, very high reso-
lution 24 Bit and easy data transmission to any PC.
For the readout of the sensors, a frequency sweep has to 
be performed for each sensor separately. In principle, 
also a simultaneous measurement for all sensors is possi-
ble, but leads to higher input amplitudes, due to the cros-
stalk between the sensors, and was therefore not imple-
mented. A sinusoidal signal with a constant frequency is 

Figure 6. Interaction of different particle sizes with the penetrating 
shear wave. Particles which are large compared to the penetration 
depth of the shear wave do not interact with the shear wave, small 
particles instead change the resonance characteristics of the sensors 
and can be sensed [7].

Figure 7. Probe head containing three U-shaped wire sensors. 1) Per-
manent magnet, 2) U-shaped tungsten wire, 3) brass sockets and 4) 
stainless steel housing.

Figure 8. Picture of the probe, note the different length of the U-
shaped wire sensors leads to different resonance frequencies for each 
sensor.
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applied to the first sensor and simultaneously the output 
of the sensor is recorded by a line-in channel of the audio 
interface. As these audio interfaces always provide ste-
reo channels the second output is directly connected to 
the second input. This input is then used as a reference 
signal for the phase φ and allows the reconstruction of 
the phase shift between the input and the output signal. 
In a next step the recorded data is crop to eliminate the 
settling effects of the signal. A sinus estimator is then 
used to obtain the amplitude and the phase out of both 
measured channels. The second direct connected signal 
is used as a reference for φ = 0. After that the next fre-
quency is processed. When the whole frequency respon-
se is measured, a fitting algorithm is used to obtain the 
resonance frequency ƒr and the quality factor Q out of 
the resonance curve [9]. Both parameters are related to 
the viscosity density product of the surrounding fluid. 
The results of an air measurement for all three sensors 
are shown in Fig. 9, Fig. 10 and Fig. 11. Fig. 12 and Fig. 13 show the stability of the quality factor 

and the resonance frequency for a longer time period in 
air.

Figure 9. Frequency response of the largest sensor with the lowest 
resonance frequency. The measurement was taken in air. The reso-
nance frequency is 941 Hz, the quality factor at 400.

Figure 10. Frequency response of the second sensor with a resonance 
frequency of 2990 Hz and a quality factor of 270 measured in air.

Figure 11. Frequency response of the smallest sensor with the highest 
resonance frequency. The resonance frequency is at 11 kHz and the 
quality factor at 60 measured in air.

Figure 12. Quality factors Q for all three sensors in air for a longer 
time period.

Figure 13. Resonance frequency fr for all three sensors in air for a 
longer time period.

LENZINGER BERICHTE 92 (2015)     06 – 11
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Results	and	Discussions

Sample Measurements
First some test measurements were performed offline 
with a series of test samples obtained from a P. chryso-
genum process [10]. A problem with these measure-
ments is the sedimentation of cells after a short time. 
This sedimentation process could be observed in the 
measurements (Fig. 14) as the U-shaped wire sensor was 
immersed into the sample from above, the tip of the sen-
sor was about 1 mm away from the permanent magnet 
which defined the bottom of the measurement chamber.

 
The accumulation of the cells on the floor of the measu-
rement chamber leads to a higher viscosity in that region 
which is also the part of the sensor with the highest sen-
sitivity. Due to this sedimentation effect, at-line measu-
rements where avoided.

Inline	Measurements
The first observed production process was a fed-batch 
culture of P. chrysogenum. Due to the filamentary struc-
ture of these fungi the probe head was contaminated after 
a very short time (Fig. 15). After drying and cleaning, the 
sensor head was again ready for use.

For a second process, we performed measurements in an 
E. coli culture [11], where the cell structure is round and 
does not show filamentous growth. Here we had no pro-
blems with attached cells on the sensor surface. The re-
ference values calculated from the measurements (the 
measurement results for the change of the quality factor 
Q and the resonance frequency ƒr were scaled and calib-
rated to the first offline biomass concentration analyses), 
showed a clear correlation to the biomass concentration 
determined as dry weight (Fig. 16 & Fig. 17). For both 
example measurements (ƒr and Q), the values at the be-
ginning of the fermentation (lower biomass concentrati-
on) correlate better with the concentrations determined 
by dry weight analyses. The measurements using the re-
sonance frequency ƒr (see Fig. 16) as the parameter rela-
ted to the biomass concentration lead to a mean relative 
error of 12% and a standard deviation of 0.07. For the 
measured quality factor Q (Fig. 17) the obtained mean 
relative error is 18% and the standard deviation is 0.13. 
Note, however, that the data base for these analyses was 
fairly limited.

Due to the large vibrations of the test reactor the measu-
red signal was very noisy, but as the sampling rate of the 
sensors is extremely high compared to the offline measu-
rements, a smoothing filter could be applied easily.
 
Conclusions

We presented a resonant viscosity sensor development 
for biochemical cell density measurements. The sensor 
probe consists of three electromagnetically actuated U-
shaped wires. The induced voltage is measured and used 
to reconstruct the resonant frequency response of each 
sensor consecutively. Out of this measured curves the 

Figure 16. Measured change of the resonance frequency fr (relating to 
the resonance frequency at t = 0, solid line) compared to the biomass 
concentration determined by dry weight analyses (blue crosses).

Figure 15. Probe fouling due to the filamentary structure of the fungi 
in a P. chrysogenum production process.

Figure 14. Shows the resonance curve for test sample measurements 
over time. The quality factor Q is decreasing, the resonance frequency 
fr stays very constant.

Increasing time

➝
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quality factor Q and the resonance frequency ƒr were ex-
tracted and used as parameter for the biomass concentra-
tion. Both parameters show clear correlations to the con-
centration. Further improvements e. g. higher robustness 
against spurious vibrations and a redesign of the sensor 
housing are necessary to reduce the influence of vibra-
tions on the sensor due to the stirring or the vibrations of 
the motor.
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tion scenarios.

Introduction

The increasing demand for analytical methods that are 
capable of in-line process analysis in an industrial envi-
ronment is accompanied by the need for improved 
tools for data processing and data analysis. These tools 
shall guarantee constant method quality and, at best, 
automatically adapt to varying conditions. Varying 
conditions can be caused, e.g. by changes in the pro-

duct composition, cleaning steps, instrumental defici-
encies or external influences, such as ambient tempera-
ture. 
Among the available methods, Near-infrared (NIR) 
spectroscopy is an attractive approach for the analysis 
and monitoring of complex industrial production pro-
cesses. NIR spectroscopy is non-destructive, reagent-

Abstract 

In this paper we present new methods for non-linear multivariate calibration and their application under real-
world conditions. The developed non-linear methods, which are applied to FT-NIR absorbance spectra recorded 
in-line in different industrial production processes (i-Red GmbH and RECENDT GmbH) result in enhanced 
model quality and robustness. We propose two new concepts for reducing the dimensionality of the calibration 
problems, which may get severe when several hundreds or thousands of wavelengths are contained in the spect-
ra. One is based on a statistical approach using a modified variant of forward selection, but extending it to extract 
bands instead of single wavelengths. Thereby, the robustness with respect to noisy recordings is increased. This 
concept is termed as forward selection with bands; the other one is a wrapper method which is based on a global 
heuristic search process achieved through genetic algorithms. Internally, they employ a new fuzzified crossover 
operator in order to weight nearby-lying bands accordingly. The calibration phase is equipped with an own de-
veloped non-linear version of PLS (partial least squares) on the basis of Takagi-Sugeno fuzzy inference systems 
offering the possibility to define piece-wise linear predictors which are combined to a non-linear model through 
Gaussian kernels, representing fuzzy rules. We will further demonstrate methods how to incrementally adapt the 
non-linear version of PLS over time with new incoming samples in order to account for significant system dyna-
mics with different outweighing strategies. This is essential to assure high stability and predictive performance 
of the calibration models in case of dynamic processes over a long timeframe. 
The application potential of these methods will be underlined by several results achieved from a viscose fiber 
production process (at Lenzing AG) and from a melamine resin production process (at Metadynea Austria 
GmbH). Active learning techniques in single-pass mode will play an essential role to keep target measurements 
and associated costs on a low economic level.
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free and provides qualitative and quantitative informa-
tion on the samples under investigation. The method is 
well established in process analytical applications and 
mostly applied in combination with multivariate data 
analysis tools [1]. The main purpose of these tools is to 
reduce the high dimensionality of NIR spectra. This re-
duction step becomes necessary, as NIR absorption 
bands of liquids and solids are relatively broad. Thus, 
each band will consists of many spectral data points 
which all provide more or less the same chemical infor-
mation. Multivariate data analysis is furthermore capa-
ble of establishing quantitative calibration models by 
linking the chemical information contained in the NIR 
spectra to the corresponding quantitative information 
obtained by a reference method. In case of multi-com-
ponent substances several parameters can be determi-
ned out of the same set of spectra, thereby saving time 
and resources. Most commonly, Partial Least Squares 
(PLS) regression analysis [2] is applied to establish 
quantitative multivariate calibration models (=chemo-
metric models). 
Considering the practical implementation of multivari-
ate calibration models, it is often challenging to main-
tain constant model quality over a longer time period. 
Unexpected changes in the chemical composition or 
instrument drifts are represented in the acquired spectra 
and require manual supervision and adaptation of the 
calibration models. Such re-calibration steps require 
significant resources, as new calibration sample must 
be drawn from the process and manually analyzed by 
reference analysis. Therefore, methods that are able to 
continuously adapt to gradual or even sudden changes 
without a need for a re-calibration are highly desired. 
Another aspect of model robustness concerns the linear 
nature of conventional multivariate data analysis, 
which impedes proper modelling of non-linear effects. 
A practical example for such an effect are the spectral 
changes induced by temperature variation. Typically, a 
temperature shift is associated with a change of the ab-
sorption properties, including not only the substance of 
interest, but also the solvent, which is often used for the 
acquisition of the background spectrum. In the absorp-
tion spectrum, a changing background absorption can 
manifest as spectral shift of the sample spectra. Such 
shifts are difficult to model by standard linear methods. 
Furthermore, a drawback of using classical linear re-
gression for model calibration is that a possible high 
nonlinearity and inhomogeneity among the indepen-
dent variables (wavebands) directly affect the coeffici-
ents of these in the established regression/approxima-
ton mapping/function in a misleading sense. 
In this paper we present newly developed methods for 
multivariate modelling of NIR spectra focusing on self-
adaption and non-linear modelling. Practical applica-

tion of these methods is shown for several parameters 
in different industrial production processes.

Methods

Data-Driven	Dimensionality	Reduction	in	
FT-NIR	Spectra
FT-NIR spectra recorded at chemical production sites 
typically contain at least a few hundreds and often up to 
a few thousands of data points, where each data point 
represents wavelength dependent spectral information 
of the sample substance. Figure 1 shows a typical ab-
sorbance spectrum on the example of melamine-form-
aldehyde (MF) resin. Absorbance spectra are usually 
preferred over an intensity spectrum for model calibra-
tion, as potential undesired substances contained in the 
spectra (such as water content, for instance) are omitted 
by referencing the sample spectrum to a suitable back-
ground spectrum [3].   

 

When processing this raw data within a batch model 
calibration step in order to establish a mapping between 
these spectra and target values (usually concentrations 
of chemical substances appearing in continuous form 
(as real numbers)), each of these wavelengths is 
handled as one single dimension within the modelling 
technique. In particular, the input to the calibration step 
is given by a wave-matrix defined as

where p is the dimensionality and N is the number of 
calibration samples drawn from the process. Typically, 
these are costly to gather, as especially their target va-
lues are quite time-intensive to be obtained due to high 
operators’ efforts for a detailed analysis of the drawn 
probes etc. (see also Section 1); hence, N << p, which 
leads to an underdetermined regression modelling pro-
blem. Furthermore, usually N should not be only equal 

Figure 1. Typical absorbance spectra measured at various process 
stages within a melamine resin production system and corresponding 
to several cloud points --- containing 6000 wavelengths = input di-
mensions for calibration models.
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to but much greater than p to guarantee a stable (near-
optimal) solution [4]. Regularization is indeed a me-
chanism to improve and guarantee stability, however it 
usually deteriorates the quality of the solution in terms 
of optimality in the least squares sense [5] (quadratic 
error between observed and predicted target values), 
even though when the regularization parameter is pro-
perly determined (see [6] for a comprehensive survey 
on parameter choice methods). 
A lot of methods have been proposed in literature to 
handle curse of dimensionality reduction in FT-NIR 
spectra [7] [8], often achieved through the concept of 
waveband selection/extraction [9]. We provide a sum-
mary of two self-developed strategies for improved op-
timality and robustness against substantial noise which 
may be contained in the spectra:
  A statistical and fast approach termed as Forward 

Selection with Bands (FSB) [10] for extracting 
wavebands instead of single wavelength using a 
Greedy-based step-wise selection scheme. 

  A slow genetic-based heuristics search approach 
employing an enhanced crossover operator for re-
trieving the global optimum in terms of a specific 
fitness function [11]. 

Even though the first approach is fast, it should be em-
phasized that it is a Greedy technique which usually 
finds the global optimal solution in approximately 76% 

of the cases [12]. The extraction of bands guarantees a 
higher robustness against spectral noise, especially 
when the models are applied to in-line process data co-
ming from the production system. The principal con-
cept of FSB is visualized in Figure 2 below. 
First, the most correlated wavelength x1xp to the target 
vector y➞ is sought. The adjacent wavelengths to the left 
and/or to the right are adjoined to form a complete band 
as long as one of the following conditions holds: 
  The maximal number of wavelengths forming one 

band is reached (default 50).
  The quality of the original correlation model 

(measured in terms of R2 [13]) cannot be further 
significantly improved by adding wavelengths. 

Once one complete band is extracted, a regression mo-
del based on the so far selected bands (joined together) 
is set up using y➞ as target. The contribution of the 
wavelengths to the real target is estimated and substrac-
ted from y➞ => new y➞. With the new y➞ (remaining target 
information), the next most correlated wavelengths is 
sought from those which are not already included in 
any selected band. This is repeated until a maximal 
number of bands is selected, which is the only parame-
ter to be optimized within a cross-validation scheme. 
For each selected band, several latent variable are ext-
racted using PLS representing the main information 
about this band. These components (i.e. their scores on 

Figure 2. Stepwise waveband construction according to Forward Selection with Bands (FSB) method (to be read from left upper to right lower 
corner).
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the original data set) are then used as different input 
dimensions to the non-linear modelling scheme descri-
bed in the subsequent section.        
For further details about the whole FSB algorithm, ple-
ase refer to [10], Algorithm 1. 
As mentioned above, that FSB finds the optimal soluti-
on only in about 76% of the cases due to its “Greedy 
nature”, we tried to improve it towards a higher chance 
of finding the global optimum using genetic algorithms 
[14] [15]. In particular, we designed genetic operators 
on top of FSB integrating fuzzy weights to wavelengths 
nearby lying a selected one. 
The weights assignments thereby follow the design of 
fuzzy partitions on top of the waves (bands) selected by 
FSB. Figure 3 provides an example. 
This weights assignment finally influences the cross-
over operator in a way that wavelengths with higher 
weights will have a higher chance to be included in the 
children of the cross-over process. Hence, higher 
weights are emphasized through the genetic process, 
but wavelengths with lower weights may still get a 
chance to become selected. This can happen also in 
combination with the bands already selected by FSB, 
thus non-optimal situations may be enhanced while so-
lutions far away from that one achieved by FSB are 
more unlikely to come true. 
The fitness function calculation is achieved through a 
10-fold cross-validation error [16]
of a calibration model extracted based on the selected 
wavebands, as encoded in each individual. This can be 
a standard PLS model or a more enhanced non-linear 
model, depending on the selected model architecture 
(=> wrapper approach for the selected model [17]). 
This is also a principal difference to the well-known 
iPLS method [18]
and other state-of-the-art methods such as [19] [20] 
or [21], which are more embedded and intervened 
with the concrete calibration model architecture  
chosen.

For details about the whole genetic-based selection de-
sign, please refer to [22].

Non-linear	Version	of	PLS	with	the	Usage	
of	Takagi-Sugeno	Fuzzy	Systems	
Many chemometric modelling techniques exist which 
operate on a fully linear basis, i.e. which provide re-
gression and prediction models which are linear in their 
parameters, see [23] [27] [7]. They have been most wi-
dely applied since the 80ties. One of the most promi-
nent techniques is PLS regression analysis [2], which 
serves as foundation for many chemometric modelling 
software tools (such as the well-known PLS toolbox by 
Eigenvector Research GmbH, see http://www.eigen-
vector.com). 
However, more and more non-linear effects gain im-
portance in chemical production processes due to in-
creased complexity in terms of mutual interferences of 
single parameters in multi-component systems, envi-
ronmental influences, lot sizes, etc.
Therefore, we developed a non-linear version of PLS, 
which is termed as PLS-FLEXFIS or FLEXFIS+PLS, 
as building upon a flexible fuzzy inference system 
(FLEXFIS) [25]. These are flexible in the sense to be 
able to represent the actual non-linearity degree as re-
quested from the process resp. as implicitly contained 
in the process. Thereby, PLS acts as a filter to gain the 
most important principal component directions contai-
ned in the data. Afterwards, the fuzzy system is trained 
based on the scores of the calibration data.  
The reason for choosing a fuzzy system as non-linear 
approximator is four-fold:
  It is able to serve as piecewise linear approxima-

tor, which has a funded motivation in statistical 
research theory, also having some synergies to the 
well-known and widely used local weighted re-
gression technique (LWR) [26]. The difference is 
that it provides a global model for the whole cali-
bration set, rather than to re-build a local model 

Figure 3. left: Example for 18 variables and 4 wavebands of widths 4, 2, 3, and 2. Apart from the maximum weight 1 for wavelengths in the 
bands, i.e. 3, 4, 5, 6, 8, 9, 11, 12, and 13; wavelengths number 1, 7, 10, and 15 get 0.5, and wavelengths number 14 and 16 get 0.75; right: a 
similar scheme in case when using Gaussian fuzzy sets instead of trapezoidals.
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from scratch, which is more time-consuming and 
uninterpretable. 

  It is known to be an universal approximator, being 
able to model any non-linear relationship contai-
ned in the data with a sufficient accuracy [27]. 

  It is able to automatically provide a global linear 
(PLS) model in case when there is no non-lineari-
ty contained. Thus, it acts as a real superset me-
thod to PLS. 

  Finally, it may offer nice interpretability aspects 
as the components and piece-wise local predictors 
can be represented in linguistic form in terms of 
fuzzy rules [28]. 

In particular, the functional form of a Takagi-Sugeno 
fuzzy model is given by [29]: 

(1)

with x➞ the input vector (in our case when using PLS as 
filter, the projected input vector = the scores according 
to the p most important latent variables), µi(x

➞) the 
membership degree of x➞ to the ith rule and  

 the piecewise local linear predic-
tor for the ith rule, which are combined through the nor-
malized membership function to obtain a non-linear 
smooth surface.  

Once the scores S=Xproj are extracted from the calibrati-
on set X according to the most important latent variab-
les, i.e. 

our linear algorithm searches for the optimal number of 
clusters in the data set, whereas one cluster is associa-
ted with one rule in the principal component space. 
This is achieved with an extended version of vector 
quantization, termed as evolving vector quantization 
[30], recently extended to be able to model ellipsoidal 
rules in arbitrary rotational position and equipped with 
dynamic split-and-merge operations [31] --- see Figu-
res 4 (a) and (b) for a comparison between axis-parallel 
and arbitrarily rotated rules [32]. 

   

Figure 4. left: clusters (=rules) extracted in axis-parallel position 
for modelling the partial linear trends of the overall non-linear (noi-
sy, sinusoidal) relationship between input feature X and target y; 
middle: clusters (=rules) extracted in rotated position for a more 
compact and accurate modelling of the same relationship (following 
closer the partial linear trends);
right: projection concept in case of arbitrarily rotated rules respec-
ting its span along the principal components directions.

This leads to rules defined by multi-dimensional Gaus-
sian kernels:

LENZINGER BERICHTE 92 (2015)     12 – 32



1717

opposed to conventional (“old-school”) axis-parallel 
rules achieved through the connection of fuzzy sets 
with a t-norm [33]; c➞i denotes the center of the rule, ∑i

-1 
denotes the inverse covariance matrix, defining the sha-
pe of the rule. Such rules are called generalized rules, 
forming a generalized version of Takagi-Sugeno fuzzy 
systems. These have been recently shown to be able to 
significantly outperform conventional systems in [32]. 
The projection concept to form the rules adequately, 
Figure 4 (right image), again leads to fuzzy sets and fi-
nally to linguistically interpretable partitions [28] in the 
form of the Gaussian fuzzy sets as shown in the right 
plot of Figure 3. 

Once the required rules are extracted, the linear conse-
quent parameters from the piecewise local predictors 
li(x

➞) are estimated based on a weighted least squares 
approach, whose solution can be analytically given 
within a closed form:  

                     
This is conducted for each rule separately (termed as 
local learning), including a regularization parameter αi 
for assuring a stable solution in case of matrix rank de-
ficiency. Local learning has some advantages over glo-
bal learning in terms of robustness and computation 
speed, as deeply analysed in [28] [34]. 

Adaptive Calibration Models for Dynamic 
Processes 
In today’s chemical processes and production sites, the 
presence of dynamically changing system behaviours, 
e.g. due to environmental influences, varying product 
settings or setups or changing compositions of substan-
ces, becomes more and more a necessary challenge to 
deal with when quantifying the substances using che-
mometric models [35]. 
For instance, in the viscose fiber production process (an 
application scenario which will be under our study in 
the experiments section below), operating modes and 
states of the industrial process might vary according to 
different products (i.e. fiber types) or raw materials pro-
cessed, hence also the overall composition of the spin 
bath in detail might vary. In particular, the spin bath 
might contain additives or degradation products of the 
cellulose to a varying content [36], what is also condi-
tioned by the dynamics of the industrial continuous 
operation mode and the recirculation of process media. 
This usually affects the NIR spectrum in terms of band 
shape and general appearance, in agreement with data 
recorded of samples from off-line calibration cycles. 

The consequence is that previously calibrated models 
which worked fine for a batch calibration set and also 
for preliminary on-line operation modes (yielding new 
on-line validation data) may become easily outdated 
once the dynamics become more severe. Then, the mo-
del produce wrong quantifications and cannot be relia-
bly maintained and used for condition monitoring and 
supervision purposes any longer. A real-world example 
of a significantly deteriorating performance over time 
of a calibrated static (conventional) PLS model (achie-
ving a very high accuracy on the batch calibration set) 
is shown in Figure 5, left for sulfuric acid (H2SO4) and 
right for sodium sulfate (Na2SO4) contained in the spin-
bath.  

  
Therefore, we developed a mechanism to adapt calibra-
tion models fully automatically 1.) on the fly and 2.) on 
demand:
•  On the fly means that the adaptation is performed 

in a single-pass block- or sample-wise manner, as-
suring a fast processing without time-intensive re-
training phases.

•  On demand means that the model is updated only 
when it is really required to keep its accuracy/qua-
lity --- this is essential in case when target values 
are costly to measure during the on-line process 
and thus should be kept on a minimum level (see 
next subsection). 

Figure 5. left: prediction of H2SO4 based on a static calibration 
model over a timeframe of 2-3 months: the behavior of prediction is 
only acceptable during the first 300-400 samples, but then runs out of 
the rudder; right: the same problem for Na2SO4. 
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We developed this specifically for the fuzzy systems 
model architecture as described in the preliminary sec-
tion, which resulted in the so-called eChemo learning 
paradigm [37] (short for evolving Chemometric Mode-
ling). A particular challenge for an appropriate adapta-
tion assuring high quality models is the stability-plasti-
city tradeoff [38], which on the one hand should assure 
significant plasticity of the model to change properly to 
new situations, but on the other hand should be conser-
vative enough to guarantee model stability. 
Plasticity is achieved through two concepts during mo-
del adaptation:
  Dynamically changing the structure of the fuzzy 

model according to the current non-linearity de-
gree requested resp. according to the novelty con-
tent contained in the current on-line samples

   Outweighing older learned relationships over time 
to put more emphasis on the current system situa-
tion.

The first issue goes hand in hand with the possibility to 
evolve new rules in case of significant novelty content 
in current samples (providing the name eChemo) resp. 
to merge and prune older rules once they are becoming 
unimportant (e.g. due to redundant information present 
in the system [39]). The criterion for evolving a new 
rule is a statistical motivated tolerance region around 
the multi-dimensional Gaussians. This can be achieved 
by the prediction interval given by the χ2 distribution 
according to [40]. The dimensionality of the learning 
problem has to be compensated as in case of higher 
dimensions the distances (to rules) tend to become hig-
her, therefore the tolerance region is violated more ea-
sily. In sum, these considerations lead to the following 
criterion:

with p the dimensionality of the feature space, ki the 
number of samples falling into rule i so far and fac a 
tuning parameter controlling the stability-plasticity 
trade-off (the only sensitive parameter in our method, 
usually tuned during an initial batch off-line training 
cycle). If the covariance matrix ∑i becomes diagonal 
(e.g. by updating only the standard deviations along 
each input direction), conventional axis-parallel rules 
are induced. 
If this criterion is not met, the current model is updated, 
see below.  
The second issue is addressed by a forgetting strategy, 

which is able to either exponentially outweigh older 
samples (termed as exponential forgetting) in an incre-
mental single-pass manner [37] or to forget them com-
pletely (leading to a sliding-window based approach) 
[22]. The sample weighting strategy with different 
speeds of forgetting (according to the forgetting  
factor λ) and with complete forgetting (bold solid line) 
is visualized in Figure 6. 

Stability is achieved 1.) by a converging recursive con-
sequent parameters learning, leading to a sub-optimali-
ty in the least squares sense, which is close to optimali-
ty subject to a constant; and 2.) by a updating the 
positions and ranges of influences of the rules with a 
decreasing learning gain over time, fulfilling the Rob-
bins-Monroe conditions. 

The former is a mathematically sophisticated topic as 
the conventional recursive (weighted) least squares ap-
proach (as used in past state-of-the-art adaptive chemo-
metric modelling approaches [41] [42]) for updating 
the wi's in the piecewise linear predictors of the ith rule, 
given by

with  the inverse 
weighted Hessian matrix and γ(k) the Kalman gain 

Figure 6. Smooth forgetting strategies achieving different weights 
for past samples; compared to a sliding window with fixed width 
(bold solid line) => complete forgetting of older samples.
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[43], only converges when there are no structural chan-
ges in the model [44] [45]. However, this is not the case 
in our model, as rules and thus their membership de-
grees Ψi are updated. By introducing so-called correc-
tion terms added to the parameters before the next up-
date cycles, we can balance out this non-optimal 
situation [25]. This finally achieves sub-optimality sub-
ject to a controllable constant according to an expected 
quasi-monotonic decreasing sequence of correction 
terms over time.  
The latter concerns an appropriate update of the rule 
centers resp. their inverse covariance matrices, which 
can be achieved by vector quantization based update 
concepts (in case of the centers) resp. Neumann series 
based derivations of recursive (exact) updates in case 
of inverse covariance matrix, see [LS15] for details. 

Some	Enhanced	Aspects	for	Improving	
Robustness	and	Usability	of	Calibration	

Active Learning Paradigm as a Necessity for 
Useability	in	In-line	Systems
One central challenge during model adaptation is given 
by the on demand characteristics. This means that the 
model should usually not be updated with each single 
recorded and processed measurement, but only from 
time to time whenever it is really demanded. This is 
necessary such that adaptive models can be reliable in-
stalled and used within on-line or even in-line produc-
tion processes where either the target is not available 
resp. cannot be made available for each measurement 
(as the goal is to substitute cost-intensive analysis for 
obtaining target values), e.g. the titration automat in 
case of viscose fiber production at Lenzing AG. 
Hence, it is of utmost importance to have an active lear-
ning component embedded, which is able to select the 
most essential samples for model updates on the fly and 
in (on-line) single-pass manner [46]. Usually, it is 
sought for samples 
1.  for which the model predictions are becoming 

very uncertain (termed as certainty-based samp-
ling [47]) and

2.  which contain significant diversity to the current 
knowledge already contained in the model. 

The former can be measured by so-called model-based 
confidence intervals [13], indicating a 95% probability 
that the prediction lies in this interval having a certain 
width. The width can be seen as uncertainty range of 
the model output in form of a global (constant width 
over the whole input space) or local error bar (varying 
width over the whole input space). We designed such 
error bars for generalized Takagi-Sugeno fuzzy mo-
dels, also to be able to produce enhanced output diag-
nostics, respecting different uncertainty levels in  

different parts of the input space, see [10] for the con-
crete formulas. An example of increasing error bars 
with increasing residuals (observed vs. predicted valu-
es) can be visualized in Figure 7. 

The diversity can be measured in terms of the distance 
to the current principal component space (spanned by 
the latent variables extracted from PLS) with the sup-
port of T 2 and Q-statistics [48]. The former measures 
the distance of the sample to the center of the rotated 
data cloud within the component space, the later mea-
sures the projected distance to the principal component 
space spanned by the latent variables (both indicating 
novelty) - see Figure 8 for a particular example, where 
the red dot indicates a new incoming sample.

Figure 7. Residual trends over time (red dots) when not updating the 
fuzzy model for cloud point prediction in melamin resin production, 
the black solid lines show the error bar (confidence interval) widths, 
opening up towards the end of this stream when residuals increase.

Figure 8. The geometric interpretation of Hoteling and Q-statistics 
and the associated thresholds (Qα and T2

α,m,α) for sample selection 
based on statistical theory [49] [50].
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If one of these two distances exceed a specific threshold, 
which is statistically motivated as shown in formulas in 
Figure 8, the sample is used for model update. In case 
of classical eChemo paradigm with exponential for-
getting, the sample is simply sent through the update 
mechanisms discussed above. In case of sliding win-
dow based re-training, the new sample is added to the 
window, while another sample is deleted from the cur-
rent window: 
  if it is the oldest, it leads to the classical sliding 

window approach.
   if it is another one selected by a more intelligent 

strategy using that one with lowest information 
quality, it may be able to gain some additional mo-
del accuracy as shown in [11]. 

Figure 8b shows the principal process work-flow of the 
adaptive chemometrics unit as will be embedded in the 
data acquisition framework shown in Figure 9. 

Dynamic Principal Component Spaces
So far, only in case when there is a sliding-window 
based re-training conducted, the principal component 
space may change according to a full best parameter 
grid search over different number of latent variables. In 
the real single-pass adaptation mode, where each sam-
ple is used for model update and immediately discar-
ded, afterwards, it has been assumed that the principal 
component space remains constant throughout the on-
line adaptive modelling phase, once estimated through 
PLS during an initial batch calibration phase.
However, in reality the position of absorption bands, 
containing the essential sample information for produ-
cing a reliable mapping from the FT-NIR spectra to the 
targets, may also change [51]. A drift or shift in the  
process may arise due to a change in the equipment  

conditions (e.g. a decrease in the lamp intensity) or due 
to different production (e.g. spin-bath) cycles [36].  
A particular example is the determination of sodium 
chloride in concentrated aqueous solutions where the 
shift of water absorption bands is the source of analyti-
cal information [52].
In order to address such dynamics, it is necessary to 
update the importance of the wavelengths resp. 
wavebands over time. This can be directly associated 
with an update of the principal component space, as the 
loadings of this space reflect the importance (levels) of 
the wavelengths in each component, especially in the 
most influencing components (explaining the largest 
variation in the data). 
For doing so, we proposed an incremental update of the 
component space in unsupervised manner according to 
the following strategy [10]: 
  Compute the residual vector of a new incoming 

sample to the component space, similarly as done 
for calculating the Q-statistics. 

   Check whether the norm of the residual vector ex-
ceeds a certain threshold, as shown in Figure 8.  

  If yes, a new component is added (starting with 
equal loadings over all wavelengths). 

   If no, the component space is incrementally upda-
ted by solving a smaller intermediate eigenvalue 
problem and multiplying the solution matrix (con-
taining eigenvectors as columns) with the current 
component space matrix, extended with the nor-
malized residual vector having length 1. 

This together with the recursive least squares update 
formulas as mentioned above (for updating the regres-
sion coefficients) finally resulted in an incremental 
Principal Component Regression method (incrPCR), 
applicable for dynamic linear problems. However, the 
dynamic expansion of the model structure in fully in-
cremental manner (once the principal component space 
is expanded) is still a remaining challenge to be inves-
tigated (currently, models need to be re-trained when 
the input structure expands). Another restriction is that 
the principal component space can be only expanded, 
but not contracted, neither re-ranked (first principal 
component always stays the most important one). 

Repeated	Measurements	Handling	and	Orthogonal	Sensor	
Integration	
In many chemical applications, measurements are re-
peated several times in order to increase the likelihood 
to receive valid data for particular system states and/or 
operation modes. This is because spectrometers may 
fail during their recordings due to several fallout rea-
sons [53]. Once having the data collected, most of the 
repetitions turn out to be valid as the fallout rate is usu-
ally pretty low. Although they are repeated measures, 

Figure 8b. Adaptive chemometric model building work-flow in an 
on-line chemical process.

LENZINGER BERICHTE 92 (2015)     12 – 32



2121

they may still deviate from each other (having slightly 
different amplitudes at several wavelengths positions) sub-
ject to the noise level contained in the recordings, which 
also affects the signal-to-noise-ratio of the data [54].  
Exploiting the diversity in the different recordings by 
building a base model for each repetition set finally fol-
lows a similar concept as conducted in the well-known 
bagged ensemble (=bagging) approach [55] (following 
an exploration of the sample space) --- which is known 
to usually increase stability and outperform single base 
models [56]. 
Assuming to have m repetitions of measurements 
available, then m (non-linear) regression models 
R1, ..., Rm are built with the same concepts as mentioned 
in the previous sections. An expected model quality on 
separate validation data can be estimated by strategies 
such as cross-validation error (batch off-line case) or 
k-step-ahead prediction errors (incremental on-line 
case), using measures such as R-squared(-adjusted) 
[13]. These qualities Q1, ..., Qm lying in [0,1] can be 
used as weights 
                          w1, ..., wm  

for combining the predictions y(R1), ..., y(Rm) of all the 
regression models R1, ..., Rm, i.e. the final model output ŷ   
is obtained by:

This strategy has been successfully applied in cloud 
point prediction (see results section). 
In some chemical applications, additional physical sys-
tem variables (e.g. temperatures, pressures, emissions 
etc.) may be by-measured additionally to the spectra 
for enhanced supervision and monitoring purposes. 
This is usually achieved with so-called orthogonal sen-
sors, additionally installed to the spectrometer. These 
are delivering numeric values (real numbers) directly 
indicating the actual state of the system. 
Different concepts for combining and amalgamating such 
numeric measurements with the recorded spectra have 
been proposed in [10], also respecting different levels of 
influences of the various sources among each other (higher 
impact in calibration for spectra and vice versa).

Experimental Setup

Application Scenarios
We investigated three types of chemical applications 
for evaluation and test purposes of our methodological 
developments demonstrated in the previous section:
  Quantification of process parameters in polyethe-

racrylat (PEA) production, which are most impor-
tant to assure a high quality of the final product, 
namely hydroxyl (OH) number, viscosity (PL) 

and acidity (acid number, SZ). Prior to the appli-
cation of chemometric models, an off-line labora-
tory analysis by experts and operators has been 
required to perform a manual supervision of these 
substances (lasting over 2-3 hours for receiving 
one concrete value of one substance from a speci-
fic probe). The large range of different states in the 
process during operation leads to totally different 
compositions of the product. Due to the large va-
riation in these compositions, significant non-line-
arity in the process is expected, such that a global 
linear mapping between spectra and target subs-
tances is expected to achieve a rather poor perfor-
mance - an issue which we will verify in the re-
sults section when comparing non-linear fuzzy 
systems with PLS and other standard linear calib-
ration methods. 

  On-line prediction of the most important chemical 
substances for supervising the quality of the final 
product in viscose fiber production: H2SO4, Na2SO4 
and ZnSO4. The acid and the two salts govern the 
precipitation and agglomeration of the cellulose 
from viscose solution and the formation of the vis-
cose fiber. The concentration of those components 
has a major influence on the fiber properties. 
Hence, the accurate knowledge and control of the 
concentration are a pre-requisite for the produc-
tion of high-quality viscose fibers in the industrial 
processes. The conventional method to determine 
those concentrations is titration which is indeed an 
automated process, but quite time-consuming: it 
delivers a measurement each 10th minute, where-
as the applied NIR spectrometer (see subsequent 
section) is able to record spectra every 10 seconds, 
being able to drastically reduce the reaction time 
onto spin bath recirculations. A complete substitu-
tion of the automated titration by chemometric 
models would be the ideal situation - due to the 
high system dynamics of the spin bath, self-adap-
tation of the chemometric models is expected to 
be required from time to time, omitting a disast-
rous performance deterioration as shown in Figu-
re 5. Due to the high expense for performing titra-
tions, a requirement of the company is to reduce 
measurements and thus the update cycles of the 
chemometric models. Ideally, the goal would be 
only to measure and update the model 3–4 times a 
day. This requires an explicit selection of those 
samples within this timeframe, which are seen as 
most important to keep the chemometric model on 
a high quality (or even to improve it). 

  On-line prediction of the cloud point in melamine 
resin production process, which provides infor-
mation about the progress of the batch condensa-
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tion process in melamine resin production. Moni-
toring the value of that parameter indicates the 
best point of time to turn off heating in order to 
stop the condensation. Originally, the cloud point 
has been monitored manually, which took a high 
effort for operators, who had to walk to the basin, 
to draw a sample and analyze it in detail (until the 
appearance of a cloud in the sample when it cools 
down). Furthermore, no continuous visualization 
of the condensation process could be achieved. 
Initial tests with standard chemometric models 
(PLS) did not obtain a sufficient accuracy, show-
ing either drifting residuals over a timeframe of 
several weeks (e.g. Figure 7) or some undesired, 
unexplainable peaks in the residuals. Non-lineari-
ty combined with self-adaptivity introduced in the 
calibration modeling stages should thus improve 
this situation. An additional challenge was to inte-
grate measurements from additional sensors into 
the calibration phase, in order to exploit the fully 
available information about the state of the pro-
cess. Furthermore, the noise levels in the three 
repeated measurements desired a specific treat-
ment for assuring a (more) robust model building.

Data Acquisition 
To realize a measurement setup, all components uti-
lized for the process monitoring were installed directly 
in the chemical plants, which means that a real in-line 
application has been set up. The whole data acquisition 
and hardware setup is schematically shown in Figure 9. 

The utilized immersion probe (Hellma) is connected to 
the FT-NIR process spectrometer and to a light source 
using fiber optics. The probe has an optical path length 
of 1 mm, with a measurement window processed out of 
sapphire. The FT-NIR process spectrometer [53] is con-
structed on the basis of a Michelson interferometer. In 
order to obtain a robust design, a monolithic interfero-
meter [57] is utilized in the Michelson setup. The imple-
mented programmable logic controller handles time cri-
tical signals as well as the communication
to, e.g., a network attached storage server (NAS). Espe-
cially for time evolving and adaptive systems, as consi-
dered for viscose fiber and melamine resin production, 
it is important to have an accurate timely synchroniza-
tion between the analytical reference values and mea-
sured IR-spectra. For this task, a digital signal provided 
by the process automation system was read in via an 
automation clamp, which was connected to process 
spectrometer through the CANopen interface. Once the 
chemical analysis has been carried out, the reference 
values related to a certain spectral measurement (time 
of sample withdrawal) are saved automatically and 
thus fully synchronized with the NIR spectra.
The FT-NIR process spectrometer, whose maximal im-
mersion depth is 690mm, the minimal one 30mm, the 
outer diameter 25mm and the pipe length of the probe 
700mm, was continuously operated in a wavelength 
range from 3,900 cm-1 to 11,000 cm-1 with a spectral 
resolution of 3 cm-1. The spectral region is defined by 
the extended InGaAs — infrared detector implemented 
in the system. The measurement rate was 10 measure-
ments per second. The spectra were calculated from an 
average interferogram calculated from 30 single shot 
interferograms (measurement time: 3 s) at viscose fiber 
production, from 100 single shot interferograms (mea-
surement time: 10 s) at PEA production and from 50 
single shot interferograms (measurement time: 15 s) at 
melamin resin production. Under perfect illumination 
conditions the spectrometer has a signal to noise ratio 
of 20000:1, at a resolution of three wavenumbers and a 
measurement rate of one per second. 

Data Sets Characteristics 
Spectra has been drawn at all three application scenari-
os over a certain period of time and stored onto hard-
disc. Table 1 provides a summary of the collected data 
in all applications. 
The data has been pre-processed by standard me-
thods conventional in chemometric modelling such 
as SNV, mean centering, baseline correction etc. 
[23] [58], as well as cutting tails and other unimpor-
tant information contained in the spectra based on 
expert knowledge. 
Additionally, specific outlier detection routines have 

Figure 9. Schematic view of the data acquisition framework as ins-
talled in-line in PEA production, viscose fiber production and mela-
mine resin production, the chemometric unit highlighted by a sum-
sign plays an essential role to quantify and predict chemical 
substances, which are then transferred to the process control system; 
this transfers back the reference signal to the chemometrics unit for 
model adaptation.
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been used to clean up the data for the initial batch 
off-line calibration phases. One is based on the Ma-
halanobis distance measure [59], classifiying a sam-
ple as outlier when falling out of the tolerance region 
(statistically motivated prediction interval) [40]. The 
other is based on statistical approximations in pro-
jection methods according to the considerations in 
[60], leading to χ2 quantiles with p-values for accep-
tance regions which can be approximated by 
Snedecor’s F distribution. 
For the on-line phase, the uncleaned data has been used 
in order to mimick the real on-line plug-and-play capa-
bility of our methods (a pre-filtering on all available 
stream data would be an unallowed and invalid fetch-
ahead into the future). However, the data has been per-
manently normalized subject to the wavelengths ranges 
and characteristics seen so far in the stream (perma-
nently by-updated together with the model). We want 
to emphasize that a possible incorrect integration of 
upcoming outlier samples in the stream into the model 

update may be not that dramatic in case of fuzzy sys-
tems, as outlier samples usually trigger a new rule, 
which would then fire very little for new incoming non-
outlier samples and thus contribute very little to the fi-
nal model output.   
Example of spectra with and without pre-processing 
for the three application scenarios are shown in Figure 
10.

Results	and	discussion

PEA Production
The task is to produce models for the three target para-
meters viscosity (PL), OH number and acidity (SZ) 
with highest possible predictive quality. The first evalu-
ation round we have conducted is based on the training 
data set, on which we performed a 10-fold cross-vali-
dation procedure coupled with a best parameter grid 
search by respecting that consecutive measurements 
are not in both, training and test folds, in order to gua-

Table 1. Overview of the data sets characteristics recorded at the various application scenarios. 

Figure 10. left: original intensity spectra from PEA production, middle: pre-processed absorbance spectra from viscose production, right: 
original absorbance spectra from melamine resin production.
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Figure 11. RMSE CV error over different numbers of latent variab-
les, the intervals representing the standard deviation over the folds; 
conventional approach based on the minimal CV error would select 
7 latent variables (indicated by a circle) whereas our punished crite-
rion selects four latent variables (indicated by a big square) as its 
induced error is only slightly higher than the minimal one and lies 
within the standard deviation interval of the minimal one (indicated 
by a dotted line).
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rantee a reliable error which is not too optimistic. The 
variation range and values of the parameters depend on 
the concrete calibration modelling method we have 
used. We compared the most conventional linear me-
thods MLR, PCR and PLS with FLEXFIS combined 
with FSB, PLS and PCA as filter-based dimension re-
duction approaches --- for all of these the number of 
latent variables = the input dimensionality for the cali-
bration models have been varied from 1 to 18. Additio-
nally, we compare with support vector regression 
(SVR) in two variants (epsilon-SVR and mu-SVR) has 
having been proposed in various chemical applications 
to be a fruitful non-linear calibration method [61] [62]. 
For SVR, the width of the Gaussian kernel as well as 
the allowed margin C have been varied according to the 
suggested grid in [HCL06]. 
The tables below show the results of the cross-validati-
on error for the three targets achieved on the best para-

meter combination, leading to optimal models in terms 
of a punished criterion. 
This criterion punishes more complex models over lo-
wer complex ones such that models with lower com-
plexity receive a higher chance to be selected --- an 
example of the application of this criterion is provided 
in Figure 11 below. This is in accordance with the ex-
pectation that more complex models more likely overfit 
on new separate validation data.  

Obviously, for OH number and viscosity the non-linear 
models achieved through fuzzy systems (FLEXFIS) 
could outperform all linear models and also SVR signi-
ficantly; for SZ the performance of PLS, PCR and 
FLEXFIS is very similar; SD denotes the standard de-
viation of the errors over CV folds, NormRMSE can be 
seen as a kind of percentual error divided by 100 (i.e. 
0.01 indicates a 1% error).  
Additionally, we studied the performance of the model 
on a separate validation data set which have been recor-
ded at the same system five months later --- so, this re-
presents really a hard test case how much the system 
behaviour/dynamics changes in this timeframe resp. 
how well the actual models still fit into the environment 
and how reliably they can still quantify the target valu-
es. The results for the three targets are shown in the ta-
bles below. 

Here, the fuzzy systems based non-linear modeling 
(FLEXFIS) could outperform other non-linear as well 
as linear models, while the errors became higher than 
for the cross-validation phase, which is not a big surpri-
se. However, they still stayed in good and for the com-
pany acceptable regions for both, OH number and SZ 
(around 5%), but not for viscosity (errors grow above 
20%).  

Table 2. cross-validation errors on three target parameters in PEA 
production when applying various calibration methods onto OH-
number (OH-Zahl).

Table 3. cross-validation errors on three target parameters in PEA 
production when applying various calibration methods onto viscosity 
(Visk PL/PL).

Table 4. cross-validation errors on three target parameters in PEA 
production when applying various calibration methods onto acidity 
(SZ).
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Finally, we tried to improve the waveband selection/
extraction used as original input above to FS, PLS and 
PCA using genetic algorithms including enhanced 
cross-over operators design.
It finally turned out that on the separate validation  
set we could achieve the following error reduction  
[11]:
  For OH number from an RMSE of 3.15 down to 

around 1 (reduction of around 67%).
  For viscosity from an RMSE of 14.44 down to 

around 12 (reduction of around 17%).
  For SZ from an RMSE of 1.33 down to around 0.3 

(reduction of around 78%).
Hence, we could conclude that a genetic based wave-
length selection on original raw spectra really can bring 

a significant improvement in terms of models’ genera-
lization errors.

Viscose	Fiber	Production
In this application scenario, the main task was to cope 
with the system dynamics occurring in the spin-bath 
due to several reasons (see previous section) over a lon-
ger timeframe in a sense to keep the accuracy of calib-
ration models initially established during a batch off-
line phase at a high level. 
Several test runs have been made with various linear 
and non-linear calibration models, which have been re-
mained static for the whole on-line phase. All these 
failed showing disastrous deteriorations of model accu-
racy over time as exemplarily shown in Figure 5 for 
PLS (but similar occurrences could be observed of 
SVR, PCR, static fuzzy systems, neural networks etc.). 
Therefore, we employed the adaptive modelling con-
cepts demonstrated in the methods section. In order to 
have a fair comparison with the static models, an initial 
batch model was setup based on a small portion of the 
whole sample stream. This was achieved by the same 
procedure (CV with best parameter grid search and mo-
del selection) as conducted for the PEA production. 
Upon the final selected models, we performed a simu-
lation of the real on-line case by loading sample per 
sample from the data set recorded for evaluation purpo-
ses and stored onto hard-disc (its characteristics shown 
Table 1). For each sample, we performed the following 
steps (for each sample):  
  The target is predicted with the current model 

(=one-step-ahead prediction), compared with the 
observed target (as stored in the pre-recorded 
stream) and the error accumulated and stored (for 
evaluation purposes). 

  Optional: The active learning component is called 
solely based on the input spectra (as target is not 
available in the real in-line system) and decides 
whether the sample should be used for model up-
date. In the classical eChemo paradigm, no active 
learning is used but each sample always selected 
for model update. 

  If the sample has been selected, the fuzzy model is 
updated by one of the two variants (which one has 
to be decided before the modelling process starts):  

	   Case 1: by using the dimensionality (number 
of LVs) and vigilance (most sensitive parame-
ter steering rule evolution versus rule update 
in FLEXFIS) suggested by the model selec-
tion procedures in the off-line phase and con-
ducting a real single-pass, incremental model 
adaptation.

	   Case 2: performing a re-training on the cur-
rent window (including the new selected sam-

Table 5. errors on separate validation data for three target parame-
ters in PEA production when applying various calibration methods 
on the training data with optimal parameter settings achieved 
through CV --- for OH-number (OH-Zahl, compare with Table 2)

Table 6. errors on separate validation data for three target parame-
ters in PEA production when applying various calibration methods 
on the training data with optimal parameter settings achieved 
through CV --- for viscosity (VISK PL/PL, compare with Table 3) 

Table 7. errors on separate validation data for three target parame-
ters in PEA production when applying various calibration methods 
on the training data with optimal parameter settings achieved 
through CV --- for acidity (SZ, compare with Table 4) 
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ple, but deleting the oldest or less informative 
one) by the same procedure (CV with best 
parameter grid search and model selection) as 
described above (case PEA production). 

  If the sample has been selected, some help statis-
tics (e.g. the ranges of the wavebands, covariance 
matrices etc.) are updated. 

In case of classical incremental model adaptation, it 
turned out that the huge model quality deterioration ob-
served for static models could be fully resolved with 
almost a perfect prediction: Figure 12 shows the obser-
ved-versus-predicted plots for the same stream parts 
and targets as in Figure 5 for static models. 

In summary, very low errors fulfilling the maximal 5% 
allowance defined by the company could be achieved 
over the whole streams for each target, as shown in Ta-
bles 8-10 (first four rows corresponding to eChemo): 
around 1.3-1.7% for H2SO4 (Table 8), around 1.5-1.8% 
for Na2SO4 (Table 9) and around 1.7-2.5% for ZnSO4 
(Table 10), which could be far not achieved with static 
models (last rows), neither with incremental linear mo-
dels (incrPCR, last but one rows). An exponential for-
getting strategy with lambda = 0.9 (compare with Figu-
re 6) played an essential role to keep the model errors 
on those low levels. Switching rule pruning on (deleti-
on of redundant rule information [39]) for keeping  

the model complexity at a low rate and thus ensuring 
higher computation speed for model updates did not 
significantly worsen the results. 

However, the problem was that these results have been 
achieved when using each sample for model update. 
This was not practicable for the company, as then no 
titration automat measurement and associated costs can 
be decreased. In particular, the requirement by the com-
pany finally was to measure the targets only 3-4 times a 
day which leads to an update cycle of each 45th resp. 
each 60th sample, in order to meet some internal econo-
mic goals. Conducting this in a blind equidistant man-
ner without any variability by active sample selection, 
it lead to huge unacceptable errors of about 30%, 45% 
resp. 70% percentual errors for the three targets H2SO4, 
Na2SO4 and ZnSO4, respectively. 
Therefore, we applied our active learning scheme for 
selecting the most important samples for model up-
dates. We enforced a minimum number of samples that 
have to be between two selected ones (default 20) in 
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Figure 12. Observed versus predicted nearly perfectly overlaying 
each other when updating the calibration model with each sample 
over a timeframe of around 12-18 days (2000-3000 samples), left: for 
H2SO4, right: for Na2SO4 ---  compare with the bad results in Figure 
5 when using static PLS.

Table 8. errors on on-line data streams for H2SO4 in viscose fiber 
production with rule pruning switched on and off (“Pru”, “No 
Pru”), NAvRMSE denotes the percentual deviation which should be 
maximal 5%.

Table 9. errors on on-line data streams for Na2SO4 in viscose fiber 
production with rule pruning switched on and off (“Pru”, “No 
Pru”), NAvRMSE denotes the percentual deviation which should be 
maximal 5%.

Table 10. errors on on-line data streams for ZnSO4 in viscose fiber 
production with rule pruning switched on and off (“Pru”, “No 
Pru”), NAvRMSE denotes the percentual deviation which should be 
maximal 5%.
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order to be able to meet the requirements regarding the 
allowed re-train ratio. Indeed, it can happen that 3,4,5 
samples are then selected in a row with 20 samples in-
between, but on the other hand in lower dynamic pha-
ses no sample may be selected at all for a longer time-
frame of a few hundreds or even 1000 samples. Finally, 
it turned out that we could keep the desired re-train ra-
tio of about 45-50 samples in average.
We have been not successful with the classical incre-
mental eChemo paradigm, but could achieve good er-
rors when applying the sliding-window based re-trai-
ning approach, in a similar manner as when updating 

the models with each single sample, see Table 11: only 
for ZnSO4 a slight rise above the desired 5% errors 
could be observed. 
This indicated a change in the importance of the wave-
lengths (a shift in the spectroscopic information con-
tent), as the most essential difference is that waveband 
selection is carried out newly in the sliding window 
approach, whereas it always remains fix (obtained from 
the intial batch phase) for the classical eChemo ap-
proach.  
The error histograms in Figure 13 emphasize the use of 
more intelligence/efforts in the sample deletion strate-
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Table 11. percentual error rates for the three targets in viscose fiber production when applying equidistant re-training (“Stat”), Euclidean based 
selection (“Eucl”, SoA to be found in [64]) and our active selected scheme (“Dyn”) in combination with different sample deletion strategies 
from the sliding window (random, oldest, lessinfo); the numbers in braces indicate the real average re-train ratio (in case of “Stat” always a 
fixed value of 60).
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gy, as the larger errors above 10 can be fully omitted 
with LessInfo approach.
 
Melamine	Resin	Production	
In this application scenario, we were facing two main 
challenges:
  Establishing enhanced chemometric calibration 

models from FT-NIR spectra using orthogonal 
sensor information and the exploration of repea-
ted measures, to reduce the noise effect. This also 
includes the search for eventual non-linearities 
contained in the process to outperform previously 
applied standard PLS models. 

  Performing model adaptation cycles on demand in 
order to balance out drifts in the process, which 
may arise due to the degradation of the lamp in-
tensity and changes in the composition of the 
educt. 

Table 12 shows the achieved errors on four different 
formulations of melamine resin contained within one 
reactor when applying base and ensemble modelling 
schemes.  
Obviously, fuzzy systems in combination with PLS 
(FLEXFIS+PLS as a sort of non-linear version of PLS) 
are able to produce lower errors than the other methods 
PLS, GLMnet and other dimension reduction schemes 
including forward selection with bands (FSB). All me-

thods seem to benefit from the ensembling scheme over 
models extracted from the three repeated measure-
ments. In order to statistically underline these findings 
from first glance, we performed a Mann-Whitney-Wil-
coxon test [65] whose results are shown in Table 13 
when comparing ensemble scheme versus sample ave-
raging versus original models and in Table 14 for com-
paring FLEXFIS+PLS with other methods when ap-
plying the ensembling scheme for all. 
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Table 13. preference analysis of model ensembles versus sample ave-
raging versus non-ensembles, entries below 0.05 denotes a statisti-
cally significant preference (W=first entry worse, S = same, B=first 
entry better).

Table 14. preference analysis of FLEXFIS+PLS versus all the other 
methods when applying ensembling scheme, entries below 0.05 de-
note a statistically significant preference of FLEXFIS+PLS over the 
method mentioned in the corresponding column heading.

Figure 14. residuals signals over a timeframe of 5 months when using PLS with a fixed re-train ratio of 8 (left), FLEXFIS with a fixed re-train 
ratio of 8 (middle) and FLEXFIS with dynamically selected samples for model update (right).
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Table 12. results from various calibration methods with (“ens”) and without ensembles (“orig”), also compared to a pure averaging of the  
repeated measurements (“aver”), bold values indicate significantly best methods.



The entries in both tables represent p-values which 
when below 0.05 indicate statistical significance with a 
5% chance to be wrong. A further note goes to the inte-
gration of orthogonal sensors, which could not improve 
the accuracy of the calibration models. The reason was 
that the three variables pH value, temperature and pres-
sure were highly correlated with some wavebands in 
the spectra. Thus, by adding them into the regression 
modeling phase, no new information content for the 
target could be gained. Thus, the mapping between 
spectra and the targets could not be improved. 
In order to verify how the off-line built models conse-
cutively behave over time, we applied the finally ext-
racted models (with optimal parameter setting) to a 
stream recorded over a timeframe of about five months 
(August 2014 – January 2015). This resulted in drifting 
residuals after some weeks and undesired peaks in the 
residual signals with errors significantly above 3, an 
allowed upper limit during on-line production process. 
In order to resolve this unpleasant situation, we applied 
the same concept as for viscose production, namely a 
sliding window based re-training approach based on 
actively selected samples. The obtained residuals with 
the dynamic methods (PLS, FLEXFIS with a fixed re-
train ratio and FLEXFIS with a dynamic retrain ratio) 
over this time period averaged over each data block are 
shown in Figure 14.
Obviously, the active sample selection can reduce all 
errors to below the required threshold of 3 as indicated 
by the horizontal lines in the plots in Figure 14. The 
re-train ratio of 8 is within the expectations, as usually 
one batch contains 6 to 8 samples and at most 1 update 
within one batch should be conducted. 

Conclusions

In this paper, we provided a summary of our achieve-
ments regarding non-linear calibration modelling from 
FT-NIR Spectra on the one hand, and their self-adapti-
vity on the other hand, in order to address dynamic che-
mical processes which are going beyond having pure 
linear and static properties and characteristics. Most of 
the achievements are new developments in terms of 
combining chemometrics, soft computing, machine 
learning and genetic algorithms and thus should enrich 
the scientific community as well as industrial produc-
tion sites with on-line, dynamic modelling and predic-
tion challenges. The results on three completely diffe-
rent application scenarios show the applicability and 
feasibility of our new methods, which are statistically 
compared with state-of-the-art calibration modelling 
methods (such as MLR, PCR or PLS). In static prob-
lems, an error reduction of 30-40% could be achieved 
in most of the cases, while in dynamic problems it tur-

ned out that the usage of classical methods could not 
deliver any meaningful results at all, whereas our self-
adaptive methods could achieve reasonable errors 
within the upper allowed limits defined by the compa-
nies in large parts (with some exceptions). Active lear-
ning played an essential role to keep measurement ef-
forts at a minimum level in order to decrease the costs 
for measurements as much as possible. 

Acknowledgements

This main work was funded by the Austrian research 
funding association (FFG) under the scope of the CO-
MET programme within the research project “Industri-
al Methods for Process Analytical Chemistry - From 
Measurement Technologies to Information Systems 
(imPACts)” (contract # 843546). This publication re-
flects only the authors' views.

References

[1]  M. Blanco, I. Villarroya, NIR spectroscopy: a ra-
pid-response analytical tool. TrAC Trends Anal. 
Chem. 21, 240–250 (2002).

[2]  M. Haenlein and A.M. Kaplan, A beginner's guide 
to partial least squares (PLS) analysis, Understan-
ding Statistics, vol. 3 (4),  pp. 283-297, 2004.

[3]  P. Larkin, Infrared and Raman Spectroscopy; 
Principles and Spectral Interpretation, Elsevier 
Science Publishing, San Diego, U.S.A., 2011.

[4]  T. Hastie, R. Tibshirani and J. Friedman, The Ele-
ments of Statistical Learning: Data Mining, Infe-
rence and Prediction - Second Edition, Springer, 
New York Berlin Heidelberg, 2009.

[5]  E. Lughofer and S. Kindermann, SparseFIS: Da-
ta-driven learning of Fuzzy Systems with Sparsity 
Constraints, IEEE Transactions on Fuzzy Sys-
tems, vol. 18 (2),  pp. 396-411, 2010.

[6]  F. Bauer and M. Lukas, Comparing parameter 
choice methods for regularization of ill-posed pro-
blems, Mathematics and Computers in Simulati-
on, vol. 81 (9), pp. 1795-1841, 2011.

[7]  K. Varmuza and P. Filzmoser, Introduction to 
Multivariate Statistical Analysis in Chemomet-
rics, CRC Press, Boca Raton, 2009.

[8]  J.N. Miller and J.C. Miller, Statistics and Chemo-
metrics for Analytical Chemistry, Prentice Hall, 
Essex, England, 2009.

[9]  H. Chen, T. Pan, J. Chen and Q. Lu, Waveband 
Selection for NIR Spectroscopy Analysis of Soil 
Organic Matter based on SG Smoothing and 
MWPLS method, Chemometric and Intelligent 
Laboratory Systems, vol. 107 (1), (2011) 139-146.

LENZINGER BERICHTE 92 (2015)     12 – 32

29



[10]  C. Cernuda, E. Lughofer, P. Hintenaus, W. Mär-
zinger, T. Reischer and M. Pawlicek and J. Kas-
berger, Hybrid Adaptive Calibration Methods and 
Ensemble Strategy for Prediction of Cloud Point 
in Melamine Resin Production, Chemometrics 
and Intelligent Laboratory Systems, vol. 126,  pp. 
60-75, 2013.

[11]  C. Cernuda and E. Lughofer and P. Hintenaus and 
W. Märzinger, Enhanced Waveband Selection in 
NIR Spectra using Enhanced Genetic Operators, 
Journal of Chemometrics, vol. 28 (3), pp. 123-
136, 2014.

[12]  B. Korte and J. Vygen, Combinatorial Optimizati-
on, Springer, 2005. 

[13]  F.E. Harrel, Regression Modeling Strategies, 
Springer, New York, USA, 2001.

[14]  J. H. Holland, Adaptation in Natural and Artificial 
Systems, Univ. Michigan Press, Michigan, 
U.S.A., 1975.

[15]  D. Goldberg, Genetic Algorithms in Search, Opti-
mization, and Machine Learning, Addison-Wes-
ley, Boston, U.S.A., 1989. 

[16]  M. Stone, Cross-validatory choice and assessment 
of statistical predictions, Journal of the Royal Sta-
tistical Society, vol. 36 (1), pp. 111-147, 1974.

[17]  I. Guyon and A. Elisseeff, An Introduction to Va-
riable and Feature Selection, Journal of Machine 
Learning Research, vol. 3, pp. 1157--1182, 2003.

[18]  H. C. Goicoechea, A. C. Olivieri, A new family of 
genetic algorithms for wavelength interval selec-
tion in multivariate analytical spectroscopy, Jour-
nal of Chemometrics, vol. 17 (6) (2003) 338–345.

[19]  R. Leardi, R. Boggia, M. Terrile, Genetic algo-
rithms as a strategy for feature selection, Journal 
of Chemometrics, 6 (5) (1992) 267–281.

[20]  C. Reyns, S. d. Souza, R. Sabatier, G. Figures, B. 
Vidal, Selection of discriminant wavelength inter-
vals in NIR spectrometry with genetic algorithms, 
Journal of Chemometrics, 20 (3-4) (2006) 136–145.

[21]  Q. Fei, M. Li, B. Wang, Y. Huan, G. Feng, Y. Ren, 
Analysis of cefalexin with   NIR spectrometry cou-
pled to artificial neural networks with modified ge-
netic algorithm for wavelength selection, Chemo-
metrics and Intelligent Laboratory Systems, 97 (2) 
(2009) 127 – 131.

[22]  C. Cernuda, E. Lughofer, G. Mayr, T. Röder, P. 
Hintenaus, W. Märzinger and J. Kasberger, Incre-
mental and Decremental Active Learning for Op-
timized Self-Adaptive Calibration in Viscose Pro-
duction, Chemometrics and Intelligent Laboratory 
Systems, vol. 138, pp. 14-29, 2014. 

[23]  R.G. Brereton, Chemometrics: Data Analysis for 
the Laboratory and Chemical Plant, John Wiley & 
Sons, Hoboken, New Jersey, 2003

[24]  M. Otto, Chemometrics, 2nd Edition, John Wiley 
& Sons, Hoboken, New Jersey, 2007.

[25]  E. Lughofer, FLEXFIS: A Robust Incremental 
Learning Approach for Evolving TS Fuzzy Mo-
dels, IEEE Transactions on Fuzzy Systems, vol. 
16 (6),   pp. 1393-1410, 2008.

[26]  T. Fearn and A.M.C. Davies, Locally-biased re-
gression, Journal of Near Infrared Spectroscopy, 
vol. 11 (6), pp. 467-478, 2003.

[27]  J.L. Castro and M. Delgado, Fuzzy Systems with 
defuzzification are universal approximators, IEEE 
Transactions on Systems, Man and Cybernetics, 
part B: Cybernetics, vol. 26 (1), pp. 149-152, 1996.

[28]  E. Lughofer, On-line Assurance of Interpretability 
Criteria in Evolving Fuzzy Systems --- Achieve-
ments, New Concepts and Open Issues, Informa-
tion Sciences, vol. 251, pp. 22-46, 2013.

[29]  T. Takagi and M. Sugeno, Fuzzy Identification of 
Systems and its Applications to Modeling and 
Control, IEEE Transactions on Systems, Man and 
Cybernetics, vol. 15 (1),  pp. 116-132, 1985.

[30]  E. Lughofer, Extensions of Vector Quantization 
for Incremental Clustering, Pattern Recognition, 
vol. 41 (3),  pp. 995-1011, 2008.

[31]  E. Lughofer and M. Sayed-Mouchaweh, Autono-
mous Data Stream Clustering implementing In-
cremental Split-and-Merge Techniques --- To-
wards a Plug-and-Play Approach, Information 
Sciences, vol. 204, pp. 54-79, 2015.

[32]  E. Lughofer, C. Cernuda, S. Kindermann and M. 
Pratama, Generalized Smart Evolving Fuzzy Sys-
tems, Evolving Systems, on-line and in press, doi: 
10.1007/s12530-015-9132-6, 2015. 

[33]  E.P. Klement, R. Mesiar and E. Pap, Triangular 
Norms, Kluwer Academic Publishers, Dordrecht 
Norwell New York London, 2000.

[34]  P. Angelov, E. Lughofer and X. Zhou, Evolving 
Fuzzy Classifiers using Different Model Architec-
tures, Fuzzy Sets and Systems, vol. 159 (23),  ppp. 
3160-3182, 2008.

[35]  J. Einax, Chemometrics in Environmental Che-
mistry – Applications (2nd edition), Springer, 
Berlin Heidelberg, 2013.

[36]  K. Götze, Chemiefasern nach dem Viscoseverfah-
ren, Springer Verlag, Berlin Heidelberg, New 
York, 1967.

[37]  C. Cernuda, E. Lughofer, L. Suppan, T. Röder, R. 
Schmuck, P. Hintenaus, W. Märzinger and J. Kas-
berger, Evolving Chemometric Models for Pre-
dicting Dynamic Process Parameters in Viscose 
Production, Analytica Chimica Acta, vol. 725,  pp. 
22-38, 2012.

LENZINGER BERICHTE 92 (2015)     12 – 32

30



[38]  W.C. Abraham and A. Robins, Memory Retention 
– the Synaptic Stability versus Plasticity Dilem-
ma, Trends in Neurosciences, vol. 28 (2), pp. 73-
78, 2005.

[39]  E. Lughofer, J.-L. Bouchot and A. Shaker, On-line 
Elimination of Local Redundancies in Evolving 
Fuzzy Systems, Evolving Systems, vol. 2 (3),  pp. 
165-187, 2011.

[40]  K. Krishnamoorthy and T. Mathew, Statistical To-
lerance Regions: Theory, Applications, and Com-
putation, John Wiley & Sons, Hoboken, New Jer-
sey, 2009.

[41]  X. Wu, K.-H. Bellgardt, On-line fault detection of 
flow-injection analysis systems based on recursive 
next term parameter estimation, Analytica Chimica 
Acta, vol. 313 (3) (1995) 161–176.

[42]  O. Haavisto, H. Hyotyniemi, Recursive multimo-
del partial least squares estimation of mineral flo-
tation slurry contents using optical reflectance 
spectra, Analytica Chimica Acta, vol. 642 (2009) 
102–109.

[43]  R. E. Kalman, A New Approach to Linear Filte-
ring and Prediction Problems, Journal of Basic 
Engineering, vol. 82 (35), 1960.

[44]  L. Ljung, System Identification: Theory for the 
User, Prentice Hall PTR, Prentice Hall Inc, Upper 
Saddle River, New Jersey, 1999.

[45]  K.J. Aström and B. Wittenmark, Adaptive Control 
- Second Edition, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1994.

[46]  E. Lughofer, Single-Pass Active Learning with 
Conflict and Ignorance, Evolving Systems, vol. 3 
(4),  pp. 251-271, 2012.

[47]  P. Donmez and J.G. Carbonell, From Active to 
Proactive Learning Methods, editors: J. Korona-
cki, Z.W. Ras, S.T. Wierzchon and J. Kacprzyk, 
Advances in Machine Learning I, Springer, Berlin 
Heidelberg, (2010), 97-120.

[48]  I.T. Jolliffe, Principal Component Analysis, Sprin-
ger Verlag, Berlin Heidelberg New York, 2002.

[49]  L.H. Chiang, E.L. Russell and R.D. Braatz, Fault 
Detection and Diagnosis in Industrial Systems, 
Springer, London Berlin Heidelberg, 2001.

[50]  P.F. Odgaard, B. Lin and S.B. Jorgensen, Obser-
ver and Data-Driven-Model-Based Fault Detec-
tion in Power Plant Coal Mills, IEEE Transactions 
on Energy Conversion, vol. 23 (3),  (2008), 659-
668.

[51]  C. Pasquini, Near Infrared Spectroscopy: funda-
mentals, practical aspects and analytical applica-
tions, Journal of Brazilian Chemical Society, vol. 
14 (2), (2003).

[52]  J. Lin and C.W. Brown, Spectroscopic Measure-
ment of NaCl and Seawater Salinity in the Near-
IR Region of 6801230 nm, Applied Spectroscopy, 
vol. 47 (2), (1993), 239-241.

[53]  P. Hintenaus, G. Kvas and W. Märzinger, An Inf-
rared Spectrometer for Process Monitoring I, 
Spectroscopy, Proceedings of the IEEE Industria 
Electronics Society (IECON), Taipei, Taiwan, 
2007.

[54]  P. Hintenaus, Engineering Embedded Systems, 
Springer, Berlin Heidelberg, (2015).

[55]  L. Breiman, Bagging Predictors, Machine Lear-
ning, vol. 24 (2), (1996) 123-140.

[56]  P. Brazdil, C. Giraud-Carrier, C. Soares and R. 
Vilalta, Metalearning, Springer, Berlin Heidel-
berg, 2009.

[57]  Z. Bleier, C. Brouillette, R. Carangelo, A monoli-
thic interferometer for FT-IR spectroscopy, Spect-
roscopy, vol.14 (10), (1999), 46–49.

[58]  A. Rinnan, F. de Berg and S.B. Engelsen, Review 
of the most common pre-processing techniques 
for near-infrared spectra, Trends in Analytical 
Chemistry, vol. 28 (10), 2009. 

[59]  R. De Maesschalck, D. Jouan-Rimbaud and D.L. 
Massart, The Mahalanobis distance, Chemomet-
rics and Intelligent Laboratory Systems, vol. 50 
(2000), 1-18.  

[60]  A. Pomerantsev, Acceptance areas for multivaria-
te classification derived by projection methods, 
Journal of Chemometrics, vol. 22 (2008) 601–609.

[61]  N. Hernandez and I. Talavera and R.J. Biscay and 
D. Porroa and M.M.C. Ferreira, Support vector re-
gression for functional data in multivariate calibra-
tion problems, Analytica Chimica Acta, vol. 642 
(1-2), (2009) 110-116, 2009.

[62]  I.A. Naguib, E.A. Abdelaleem, M.E. Draz and 
H.E. Zaazaa, Linear support vector regression and 
partial least squares chemometric models for de-
termination of Hydrochlorothiazide and Benazep-
ril hydrochloride in presence of related impurities: 
a comparative study, Spectrochim Acta A Mol 
Biomol Spectrosc, vol. 130, (2014) 350-356.

[63]  C.-W. Hsu, C.-C. Chang and C.-J. Lin, A Practical 
Guide to Support Vector Classification, 2006, 
Technical Report at the Department of Computer 
Science and Information Engineering, National 
Taiwan University, 2006. 

[64]  F. Douak, F. Melgani, N. Alajlan, E. Pasolli, Y. 
Bazi, N. Benoudjit, Active learning for spectro-
scopic data regression, Journal of Chemometrics, 
vol. 26 (2012) 374–383.

LENZINGER BERICHTE 92 (2015)     12 – 32

31



3232

[65]  H. Mann and D. Whitney, On a test of whether 
one of two random variables is stochastically lar-
ger than the other, Annals of mathematical Statis-
tics, vol. 18, (1947)  50-60.

LENZINGER BERICHTE 92 (2015)     12 – 32



3333

Application-oriented Standard-free Methods for 
Calibration Transfer 
  

Birgit Malli*1, Thomas Natschläger1,	Marcin	Pawliczek2,	Thomas	Reischer3, Wolfgang Kant-
ner3,	Markus	Brandstetter2, Wolfgang Märzinger4	and	Jakub	Kowalski4

1 Software Competence Center Hagenberg, 4232 Hagenberg, Austria1 
2 RECENDT – Research Center for Non-Destructive Testing GmbH, Altenberger Straße 69, 4040 Linz, Austria
3 Metadynea Austria GmbH, 3500 Krems, Austria
4 i-RED Infrarot Systeme GmbH, 4020 Linz, Austria
* Birgit.Malli@scch.at

Abstract 

Within the past few decades, the combination of spectroscopic measurement techniques and multivariate calibration 
methods has become increasingly prominent for the extraction of (bio-) chemical information in various application 
fields. While the obtained results via such an approach are very satisfying in general, the process of data collection, 
model calibration and model optimization is a rather time-consuming and cost-intensive one. As such, one certain-
ly aims to prevent the need for a repetition of these steps. In certain cases, though, changes in the environmental 
conditions, the measurement setup or the measured substance itself may occur and render the calibrated model in-
valid. In such a situation, either a new model needs to be developed or mathematical operations, referred to as (ca-
libration) transfer methods, can be performed to transfer knowledge from the original to the new setting. Within this 
contribution, we introduce and discuss a row of application-oriented transfer approaches that are both easy to com-
prehend and implement. The proposed methods do not assume the availability of transfer standards (i.e. a set of 
samples measured under the old and new condition) and require the measurement of only a few reference values in 
the new setting. We evaluate the introduced transfer methods on data from melamine formaldehyde (MF) resin 
production and show that these techniques can achieve considerable improvement of predictions for data from three 
forms of changes in the given application context.

Keywords: Calibration Transfer, Instrument Standardization, Transfer Learning, NIR Spectroscopy, Chemometrics, Melamine 
Resin

Introduction

It has been proven within the past few decades that a 
combination of spectroscopic measurements and mul-
tivariate calibration techniques is able to extract (bio-)
chemical information in various applications fields. In 
this work we focus on near-infrared (NIR) spectral 
data from melamine formaldehyde (MF) resin produc-
tion, where the objective of this in-line installation 
comprises in the monitoring of the corresponding po-
lymerization progress and the estimation of the end 
point of the reaction.
NIR spectroscopy has commonly been applied for on-
line / in-line monitoring of (bio-) chemical processes 
(Du, et al., 2011) quality control of pharmaceutical, 

petroleum, agriculture and other products, environ-
mental analysis, medical diagnostics and academic 
research (Kramer, et al., 2008). Some of the benefits of 
this measurement technique are its non-destructive na-
ture, the possibility for a rapid and continuous process 
monitoring, the fact that no or only little sample prepa-
ration is required in general and in the considered ap-
plication also the relatively small effort for the imple-
mentation within the existing control systems (Kramer, 
et al., 2008; Fan, et al., 2008; Peng, et al., 2011; Paw-
liczek, et al., 2015; Du, et al., 2011).
In order to extract chemical information from the mea-
sured NIR spectra, the multivariate calibration tech-
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nique partial least squares (PLS) (Wold, 1966; Wold, 
et al., 2001) has been utilized. PLS is a projection me-
thod commonly used in chemometrics to handle the 
mathematically demanding attributes of spectral data.
In general, as well as the studied melamine formalde-
hyde (MF) resin application, the process of data coll-
ection, model calibration and model optimization is 
rather time-consuming and costly. Therefore, one na-
turally hopes that the obtained model remains accurate 
for a very long time. Unfortunately, changes in the en-
vironmental conditions, the measurement setup, e.g. 
due to maintenance operations, or the measured subs-
tance itself do usually affect the measured spectra and 
make the calibration model invalid (Feudale, et al., 
2002; Wise & Roginski, 2015; Kramer, et al., 2008; 
Du, et al., 2011). In such a case, there are two possibi-
lities to deal with this issue: i) calibration of a comple-
tely new model and ii) the application of mathematical 
methods aiming at the transfer of knowledge collected 
during the calibration process.
Obviously, option ii) causes less costs and effort, if re-
asonably accurate predictions for the new data setting 
can be achieved. This is the reason why corresponding 
methods have been widely studied in literature. They 
are referred to as calibration transfer or instrument 
standardization in chemometrics (De Noord, 1994; 
Bouveresse & Massart, 1996; Feudale, et al., 2002) 
and are known as transfer learning, domain adaptation 
or multi-task learning in the machine learning commu-
nity (Crammer, et al., 2008; Pan, et al., 2008; Mansour, 
et al., 2008).
In this contribution, we will evaluate a row of transfer 
approaches which are particularly application-oriented 
in the sense that they are not based on transfer stan-
dards (i.e. a set of samples measured under both the 
old and new measurement / environmental / sample 
condition), and do not require any or only a very small 
amount of reference measurements in the new setting.

Materials and Methods

General	Information
Notation and Assumptions
In the following we denote knowledge (data, model,..) 
belonging to the primary measurement / environmen-
tal / sample condition as source (S) knowledge and 
information coming from the new setting as target (T) 
information. 
The (S)𝑛×𝑝 and (𝑇)𝑛×𝑝  matrices(𝑆)𝑿 and (𝑇)𝑿 contain 
the spectral measurements (single spectra 𝒙𝑖 form the 
rows and columns correspond to wavelengths / wave-
numbers). Reference measurements (labels), denoted 
as (𝑆)𝒚 and (𝑇)𝒚, represent column vectors and predic-

tions are generally marked by a hat symbol. If a set of 
spectra is unlabelled, i.e. no reference value is availab-
le for them, then these are written as 𝑢𝑛𝑙𝑎𝑏

(.)𝑿, while  
labelled data are denoted as 𝑙𝑎𝑏

(.)𝑿.
Following the setting of the application context, we 
assume the following data to be available (see Figure 
1): A set of labelled S spectra, 𝑙𝑎𝑏

(𝑆)𝑿, which, together 
with reference measurements, 𝑙𝑎𝑏

(𝑆)𝒚, form the basis of 
the source calibration model, a few labelled target 
spectra, 𝑙𝑎𝑏

(T)𝑿, with corresponding 𝑙𝑎𝑏
(T)𝒚 and a set of un-

labelled spectra, 𝑢𝑛𝑙𝑎𝑏
(T)𝑿, in the target domain, where 

for the sample sizes the relations 𝑙𝑎𝑏
(𝑆)𝑛 ≫ 𝑙𝑎𝑏

(T)𝑛 and  
𝑢𝑛𝑙𝑎𝑏

(T)𝑛 � 𝑙𝑎𝑏
(T)𝑛 hold.

𝑢𝑛𝑙𝑎𝑏
(T)𝑿 is assumed to be available based on our experi-

ence of data collection in practice: Usually, reference 
values are time-consuming and costly to measure, 
while spectral data can be obtained very easily or are 
even recorded automatically. The latter is also the case 
in the in-line NIR installation considered here and 
hence it is desirable to make use of these additional 
spectra, if possible.
In addition to the notation above, we write (𝑆)𝛽∈𝑅n and 
(𝑆)𝛽0∈𝑅 for the vector of regression coefficients and 
the intercept term of the source calibration model, res-
pectively and use the notation .∗ for element-wise mul-
tiplication.
 

Transfer Standards
Many common chemometric transfer methods are 
based on the evaluation of differences between the 
source and target condition (Feudale, et al., 2002). For 
this, a set of samples, called transfer standards, is assu-
med to be measured in both the source and target set-
ting. The corresponding spectra are compared in order 
to learn about the difference between source and tar-
get. This information is then utilized to develop appro-
priate correcting measures.
There are several ways to characterize (Bouveresse & 
Massart, 1996) and choose (Wang, et al., 1991; Wise & 
Roginski, 2015; Kennard & Stone, 1969; Wang, et al., 
1992) good transfer standards. All of them, though, 
have naturally in common that the same set of samples 
can be measured in the source and target domain. Un-

Figure 1. Picture of the data setting of the investigated application.
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fortunately, this is not the case for the considered in-
dustrial application.
Thus, we need to come up with approaches that do not 
require the existence of transfer standards. Several 
such methods are described in the following.

Methods
Initial	Robust	Calibration	Model
In a perfect world, we would ask for a source calibra-
tion model that is robust enough to deal with changing 
conditions. For such a model to be built, one can for 
instance try to incorporate all forms of expected future 
variation inside the calibration process (De Noord, 
1994). This, however, is not feasible in practice as it is 
generally impossible to foresee all sources and direc-
tions of future change. Another approach is based on 
the idea to build a model only on spectral regions that 
are not affected by expected changes (Bouveresse & 
Massart, 1996). This, though, reduces to the same pro-
blem that not all forms of change are known before-
hand plus the issue that chemically significant areas of 
the spectra may be removed. Alternatively, ensemble 
methods as the one proposed in (Ni, et al., 2011), may 
be pursued. These approaches do certainly represent a 
valid alternative and are intended to be investigated in 
future work.
In addition, spectral pre-processing methods, menti-
oned below, may be able to make the initial calibration 
model more robust. The investigation of a selection of 
advanced pre-processing methods shall be addressed 
in the future.

Model updating
If the direct application of the source model is not ac-
curate enough, a natural extension is the recalibration 
of the model on an augmented calibration set consis-
ting of the original source data and the labelled target 
data. This technique, here denoted as T+S, is very 
common in both literature and practice. In cases where 
the number of labelled source data exceeds the number 
of labelled target data considerably, though, the new 
variance incorporated from the target setting may be 
“washed out” by the source information, resulting in 
an unsatisfying model. In order to deal with such a set-
ting, a stronger weighting of the target data seems sen-
sible. In this contribution we investigate the approach 
to weigh2 the labelled target data five3 times before 
they are added to the source data. This method will be 
referred to as 5T+S in the following.
Additionally to these simple model updating approa-
ches, automatic model updating methods have been 
studied (see e.g. (Wise & Roginski, 2015) and refe-
rence therein). However, as these methods are current-
ly considered suitable for laboratory settings only 

(Wise & Roginski, 2015) their applicability in an in-
dustrial context shall be investigated in future work.
Obviously, for model updating approaches to be ap-
plied, a new model has to be trained and optimized.

Prediction Correction
Another commonly used transfer approach, referred to 
as LIN hereafter, performs a univariate slope and bias 
correction of predictions from the original calibration 
model. In order to learn appropriate values  
for the slope, 𝑘, and the bias, 𝑑, target labels, 𝑙𝑎𝑏

(T)𝒚,  
and their predictions from the source model,  
𝑙𝑎𝑏
(T)𝒚𝑆=𝑙𝑎𝑏

(T)𝑿∗(𝑆)𝜷+(𝑆)𝛽0, are related in a linear model:
𝑙𝑎𝑏
(T)𝒚=𝑙𝑎𝑏

(T)𝒚𝑆∗𝑘+𝑑    𝑘, 𝑑∈𝑅.
The corrected prediction, (𝑇)ŷ, for a new spectrum, 
𝑢𝑛𝑙𝑎𝑏

(T)𝒙, is then obtained as:
(𝑇)ŷ=(𝑇)𝑦�̂�∗𝑘+𝑑,         
where (𝑇)𝑦�̂�=𝑢𝑛𝑙𝑎𝑏

(T)𝒙∗(𝑆)𝜷+(𝑆)𝛽0.
A clear advantage over the model updating approach is 
that no new calibration model has to be trained and 
optimized for this method.

Correction of Target Spectra
The idea behind this class of methods is based on the 
assumption that a correction of the target spectra in a 
way that makes them more similar to the source mea-
surements may be enough for the source model to be 
valid again. Typical chemometric transfer approaches 
following this rationale are based on the availability of 
transfer standards (Bouveresse & Massart, 1996; Feu-
dale, et al., 2002).
We, however, investigate two basic methods applicable 
also in standard-free settings which are motivated by 
the idea that a change in the measurement setting can 
eventually be modelled by a linear filter which may be 
approximated as an element-wise multiplication (plain 
intensity spectra) or element-wise addition (absorption 
spectra) in the frequency / spectral domain.
Hence, the first approach, named additive mean cor-
rection (AMC) by us, subtracts the mean of the availa-
ble target spectra from a new target spectrum and adds 
the source mean spectrum. Via this simple correction, 
the mean over the corrected available target spectra 
becomes equal to the mean of the source spectra. For a 
target spectrum, (𝑇)𝒙, AMC performs
(𝑇)𝒙𝑎𝑚𝑐=

(𝑇)𝒙−(𝑇)𝝁+(S)𝝁,
where (S)𝝁 denotes the source mean calibration spect-
rum and (T)𝝁 denotes the mean over all labelled and 
unlabelled target spectra. 
The second approach assumes a multiplicative relati-
onship (S)𝒙= (T)𝒙  .∗ 𝜽, with 𝜽∈𝑅𝑝 , between target  
and source spectra. We propose to compute the vector 
𝜽 as 𝜽= , thereby resulting in (T)𝒙𝑚𝑚𝑐=

(T)𝒙  .∗ .

LENZINGER BERICHTE 92 (2015)     33 – 46



3636

Due to its definition, we refer to this approach as the 
multiplicative mean correction (MMC) method.
Similar to LIN, no new calibration model needs to be 
trained and optimized for these two transfer approa-
ches. Moreover, the possible (not mandatory) use of 
the set of unlabelled target spectra, which is the gene-
rally larger than the one of labelled observations, may 
be advantageous. Note that no target reference measu-
rements are required / used for AMC and MMC. AMC 
and MMC are two simple instantiations of the more 
general idea to make the probability distributions of 
the observations in the source and target domain more 
similar. A concept on which many transfer learning ap-
proaches from the machine learning community are 
based on (e.g. Pan, et al., 2011).

Correction of Source and Target Spectra
In some cases, it may help to modify both the source and 
target spectra to make them more similar. If lacking 
transfer standards, natural approaches in this group per-
form standard or more advanced signal pre-processing 
methods. Standard pre-processing techniques include 
simple mathematical operations, signal centering or sca-
ling, noise, offset and baseline filtering as well as sample 
normalization approaches (Feudale, et al., 2002; Woody, 
et al., 2004; Kramer, et al., 2008; Eigenvector Research 
Inc., 2015). In our application noise filtering as well as 
normalization techniques have been investigated. These 
can, however, not eliminate the need for transfer me-
thods in many of the observed changes.
Examples of more advanced signal pre-processing 
techniques used in the transfer context are: finite im-
pulse response (FIR) filtering (Blank, et al., 1996; Tan, 
et al., 2002), an approach strongly related to MSC, ge-
neralized moving window MSC (MW-MSC) (Kramer, 

et al., 2008), wavelet analysis (Feudale, et al., 2002) 
and a transfer learning version of orthogonal signal 
correction (OSC) (Wold, et al., 1998; Woody, et al., 
2004). Among these techniques, OSC appears as an 
approach that is both easily implementable and very 
promising. We therefore plan to investigate this parti-
cular approach in future work.
All methods in this group require the training and usu-
ally optimization of a new calibration model.

Properties	and	Requirements	of	Different	
Transfer Methods
An overview over the properties and requirements of 
the transfer methods applied in this contribution can be 
found in Table 1. The signs + and - indicate that a cer-
tain column is true, or false, respectively.

Results	and	Discussion	

Detailed	Information	on	Measurements	
and Method Application
Data
Data from melamine-formaldehyde (MF) resin pro-
duction are examined in this contribution. While some 
information on the measurement setup and model cali-
bration is given here, a more detailed description is 
provided in (Pawliczek, et al., 2015). Spectroscopic 
data of several MF resin recipes are continuously coll-
ected in-line the production plant. To this end, a com-
mercial FTNIR-spectrometer (i-RED Infrarot Syste-
me, Austria) combined with a NIR transmission 
immersion probe with a 1mm measurement gap has 
been installed. In contrast to the more common ap-
proach of studying absorption spectra, the use of sing-
le beam spectra, i.e. the transmitted light intensity, has 

Table 1. Properties and requirements for investigated transfer methods.
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been followed, as raw data performed favourably in 
this industrial application.
In order to monitor the polymerization progress and to 
estimate the end point of the reaction, samples of the 
reactor content are taken regularly and analysed manu-
ally by a water tolerance method. The obtained values, 
denoted as turbidity points, depict a measure of reac-
tion completeness and serve as reference measure-
ments for developed chemometric models. The corres-
ponding spectral measurements are assigned based on 
a signal input actuated manually when a sample of the 
reactor content is taken. In order to reduce possible 
measurement errors and small deviations in the manu-
al actuation process, the three closest (w.r.t. time) NIR 
spectra are associated with each reference value.
The data studied in this contribution cover a row of 
variances: They were collected using four different 
light sources (lamps), two different chemical reactors 
and corresponding fibre lengths, partly incorporated 
an optical multiplexer in the measurement process and 
cover five MF resin recipes as well as a time range of 
about 3.5 years.
Due to this very long time period and the different 
measurement setups, various chemometric models 
have been developed and optimized: Some of them ca-
librated on a single recipe, others on data from diffe-

rent related recipes, some of them using only SNV 
(data before multiplexer installation) as data pre-pro-
cessing, others performing certain extents of Savitzky-
Golay signal smoothing beforehand, some using only 
five PLS components, others incorporating up to 8 fac-
tors, some using two quite slim spectral regions and 
others selecting somewhat wider variable intervals.
Even though fairly robust and accurate models could 
be built, a change in the measurement setup generally 
required and still requires model updating or recalibra-
tion and the corresponding time to collect a significant 
amount of new data. Furthermore, the introduction of 
a new MF resin recipe usually demands for a new ca-
libration and model optimization process, particularly 
if the new recipe is not very closely related to an alrea-
dy modelled one. These issues shall be addressed in 
our contribution via the investigation of the transfer 
methods described above which are evaluated on three 
groups of transfer settings.

Transfer Settings
Three different transfer groups are covered in this con-
tribution:
1)  Lamp change: As there are data for four different 

light sources in various settings available, many 
of the transfer scenarios fall into this group.

Table 2. Investigated transfer problems. Results are only shown for rows in bold font.
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2)  Change of Reactor + optical fibre: Two different 
reactors have been used and hence constitute 
transfer problems.

3)  Recipe change: While four of the five recipes 
may be modelled together, a fifth recipe does not 
fit inside such an overarching model, thereby pro-
viding another possible transfer setting.

Although the transfer direction is generally fixed 
within an industrial application, aiming e.g. at the 
transfer of a model for an earlier light source to the 
data obtained by the following lamp, we also investi-
gate transfers in the opposite of the natural transfer 
direction. The reason for this is our intention to study 
whether or not transfers are generally equally success-
ful in both directions. Furthermore, one may gain in-
sight in the influence of the source sample sizes, modi-
fications of pre-processing and / or variable selection 
methods and the presence of possible outliers or influ-
ential points.
24 transfer problems plus their opposite directions, 
thereby resulting in a total of 48 transfer scenarios, 
have been studied. An overview of these transfer prob-
lems, not listing scenarios to the opposite direction 
case5, is given in Table 2, where lamp changes are 
marked in orange, reactor changes are coloured in 
green and the recipe change problem is shown in yel-
low.
Among these transfer problems, we only discuss re-
sults for those settings where the performance of the 
source model becomes considerably worse in the sour-
ce to target transfer. We define this situation via the 
ratio 𝑅= , where 𝑅𝑀𝑆𝐸𝐶𝑉𝑃𝐿𝐴𝐼𝑁 is computed via 
5-fold grouped (over sample IDs) cross validation 
over the source data and 𝑅𝑀𝑆𝐸𝑇𝑃𝐿𝐴𝐼𝑁 denotes the RMSE 
obtained on all available target data when the source 
model is used for prediction. If 𝑅≥6.5 for at least one 
direction, then this transfer problem (both directions) 
is investigated further. As such, we report results (not 
all in detail) on the transfer scenarios with numbers 
1-10 and 39-48 in Table 2 (bold font).

Sample Splitting and Performance Measures
As shown in Figure 1, we assume that a small set of 
labelled and a larger set of unlabelled target data is 
available for calibration transfer. In all investigated 
transfer settings, a certain number, all

(T)𝑛, of labelled tar-
get spectra is available. We split these data into 𝑙𝑎𝑏

(T)𝑿,
𝑢𝑛𝑙𝑎𝑏

(T)𝑿 and test
(T) 𝑿 with their corresponding reference 

values, where 𝑢𝑛𝑙𝑎𝑏
(T)𝒚 remains unused. The number of 

labelled samples6, for which the reference value is per-
mitted to be used during transfer, is varied between 5, 
10, 15, 20, 50 and 707  samples, 0.5* all

(T)𝑛 of the remai-
ning target data are chosen randomly and used as test 
set, and all other data form the unlabelled target data set.

Different ways (target sample selections), how to 
choose / select the 𝑙=5, 10, 15, 20, 50 or 70 labelled 
target samples have been investigated: 1) First denotes 
the way usually best applicable in an industrial NIR 
in-line application and uses the first 𝑙 samples which 
become available (in chronological order), 2) Random 
selects 𝑙 target samples randomly among all available 
labelled ones and 3) the choice method KennardStone 
follows the Kennard-Stone algorithm (Kennard & 
Stone, 1969) to find the subset of 𝑙 labelled target data 
accessible for transfer in order to sample the target 
space optimally; see (Kennard & Stone, 1969) for de-
tails.
As was found for various approaches known to obtain 
representative transfer standards (Bouveresse & Mass-
art, 1996), we also see that different sample selection 
methods do generally lead to considerably different 
performances. In order to reduce the influence a parti-
cular random data split might have, splitting is repea-
ted five times. Mean values as well as standard devia-
tions8 over the five obtained 𝑅𝑀𝑆𝐸𝑃=𝑟𝑚𝑠𝑒𝑇𝑒𝑠𝑡 
(Test

(T) 𝒚,Test
(T) 𝒚 ) values serve as performance measures in 

the graphical illustrations below (different transfer me-
thods were evaluated on the same data splits).
In the following we only present the results for the 
First and KennardStone target sample selection as we 
observed that results obtained via a random selection 
are generally very similar to ones based on a Kennard-
Stone selection.

Pre-processing and Model Building
It has been mentioned above, that generally one aims 
to find a quick and inexpensive way to provide accura-
te predictions for the target setting. Therefore, we fol-
low the approach to retain the pre-processing methods 
and variable selection applied in the source calibration 
model. Moreover, in case of TGT, T+S and 5T+S, 
where a new PLS model is trained, the number of PLS 
components is fixed at the same value as used for the 
source model. AMC and MMC are applied to the pre-
processed selected spectral regions.

Software
Results were generated via Matlab code written in-
house. All algorithms rely on the software Matlab® 
release 2012a (Mathworks Inc., Natick, MA, USA) 
and the Matlab® Statistics Toolbox 2014.

Results	for	Lamp	Change
Among the three transfer groups investigated, the 
source model usually gives the best results after a lamp 
change. In numerous cases, though, the accuracy ob-
tained via this plain application of the model trained 
on source data is far beyond an acceptable threshold 
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and transfer methods shall be applied. Here we discuss 
results for two different lamp transfers (lamp 2→3; 
lamp 1→2) and their opposite directions (transfer pro-
blems 9/10 and 3/4 in Table 2 where 10 and 4 are the 
opposite direction).

Results	for	Lamp	Change	2→3 and 3→2 (Scenario 
9 and 10)
Figure 2 shows results for choice methods First and 
KennardStone in case of transfer problem 9. TGT is the 
worst transfer technique for sample selection method 
First and too large to be shown on the chosen scale. The 
corresponding curve also exhibits a high dependence on 
the chosen samples, resulting in a local minimum (RM-
SEP ~8) at 50 available target reference measurements. 
If compared to TGT’s results based on a Kennard-Stone 
selection, it becomes obvious that a simple model calib-
ration based on e.g. 20 labelled target samples can be 
relatively accurate if the samples are chosen to be repre-
sentative for the entire target space, which is assumed to 
be the case for the KennardStone choice. Such an obser-
vation has been made for several scenarios.
The plain application of the source model appears to 
be working fairly well considering that a lamp change 

has occurred between model calibration and applica-
tion to the target data. It can however be seen that a 
considerable improvement of prediction accuracy can 
be reached by the application of the mean correction 
methods AMC and MMC (these two methods yield 
very similar results and are almost indistinguishable in 
Figure 2) as well as via 5T+S model updating. In case 
of choice method KennardStone, the same is also true 
for LIN. While model updating and LIN incorporate 
the available labelled target data, it is remarkable to 
see that the methods AMC and MMC which are only 
based on unlabelled T data can also perform very well 
in this setting. Although the performance improve-
ment over the source model may not be exceptionally 
large for this transfer problem, the successful approa-
ches may however be valuable to bridge the time nee-
ded to collect enough target data for the calibration of 
an entirely new target model.
While it may be discussed whether or not the applica-
tion of transfer methods is really necessary for scena-
rio 9, this is certainly not a question for scenario 10 
(opposite lamp change 3→2.) It can be seen in Figure 
3 that the plain use of the S model results in an unac-
ceptably large RMSEP. As in practice one is usually 
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Figure 2. Prediction performance of different transfer methods for scenario 9 (lamp 2→3). NV indicates that the results of corresponding 
method are larger than the shown RMSE range.
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stuck to a selection equal or similar to the one from 
sample selection method First, TGT cannot be seen as 
a valid alternative either (too large to be shown on the 
chosen scale). The application of transfer methods 
LIN, AMC, MMC (LIN and AMC, as well as LIN and 
MMC, are partly almost indistinguishable in Figure 3) 
and 5T+S, though, can provide a solution for this 
transfer scenario.
  
Results	for	Lamp	Change	1→2 and 2→1 (Scenario 
3 and 4)
While performance results and corresponding conclu-
sions for scenario 3 do overly agree with ones descri-
bed for scenario 10 and are therefore not contained 
here, a difference can be observed for scenario 4. As 
shown in Figure 4, RMSEP values obtained for choice 
method First are considerably larger for all examined 
transfer methods. Certainly, the model updating, LIN 
and mean correction methods can achieve a considera-
ble improvement compared to PLAIN and TGT (both 
not shown in this subplot as too large), the observed 
performance, though, is still not satisfying for the ap-
plication context. We believe that our straight-forward 
approaches may be too simple to capture enough infor-

mation from the source setting to yield a more pleasing 
transfer result. Because of this, a row of further, more 
sophisticated, techniques shall be evaluated in future 
work. Additionally, the influence of source sample si-
zes on transfer results shall be investigated.
 
Results	for	Reactor	+	Fibre	Change
Compared to the lamp change scenarios, a plain appli-
cation of the source calibration model after a reactor 
and fibre change results in extraordinarily large errors 
from 24 up to 80 times the source RMSECV. As such, 
there is no question to whether or not the training of a 
new model (TGT) or some form of transfer methods 
should be applied. Herein we include results for trans-
fer scenarios 45 (reactor 1→2) and 46 (reactor 2→1).
In Figure 5 it can be seen that all applied forms of 
transfer learning provide a significant and satisfying 
improvement over PLAIN (not shown, RMSEP around 
70). Only in case of a more spread selection of labelled 
target samples, as performed by the Kennard-Stone al-
gorithm, TGT becomes an alternative at some point. If 
the number of available target reference values is lo-
wer than 50 or, as usually the case in industry, only 
samples obtained first are available, TGT presents no 
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Figure 3. Prediction performance of different transfer methods for scenario 10 (lamp 3→2). NV indicates that the results of corresponding 
method are larger than the shown RMSE range.
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valid option. It is obvious again that the adopted choice 
method plays a significant role for results. Furthermo-
re, it can be seen that LIN, T+S and 5T+S (these me-
thods are partly almost indistinguishable in Figure 5) 
outperform AMC and MMC in this setting.
In case of scenario 46 (reactor 2→1), a less complex 
source model has been trained. This may be a reason 
why RMSEP values for the target setting, displayed in 
Figure 6 are relatively high for the model updating me-
thods T+S and 5T+S (not visible in choice First, as too 
large). In contrast, LIN, AMC and MMC perform bet-
ter in this situation, although only MMC produces re-
latively satisfying results for choice method First. A 
large improvement for all methods, particularly for 
TGT (also not visible in choice First, as too large) and 
5T+S, is observed in the KennardStone case. Overall, 
though, a more satisfying result, especially for First, 
would be desirable. 

Results	for	Recipe	Change
Last but not least, the recipe change scenario 47 is dis-
cussed. Again, PLAIN performs rather poorly (RM-
SEPs around 55) and cannot be used for prediction in 
the target space. It can be seen in Figure 7 that MMC 

(not visible in the figure, since RMSEP values lie around 
25) is not an option for any choice method in this setting 
(and also the opposite scenario 48). LIN performs best 
in all cases and is closely followed by TGT if choice 
method KennardStone and at least 15 target reference 
measurements are used. For choice method First, 
though, TGT jumps up and down seemingly arbitrarily. 
Thus, once again it can be seen that TGT is not robust 
with respect to the available target samples. 

Discussion
Considerable deviations are observed for results based 
on different target sample selection methods (or possi-
bilities). While all transfer methods appear to perform 
better on a wider spread sample selection (Random 
and KennardStone), TGT appears to be affected most 
by these changes. This is certainly comprehendible, as 
TGT trains a new model solely based on the new T 
samples. If these samples are not representative for the 
whole T space or in case that an observation does not 
perfectly fit into this space, the calibrated model will 
perform poorly. 
The results presented above show that transfer problems 
may be solved or at least considerably reduced via practi-
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Figure 4. Prediction performance of different transfer methods for scenario 4 (lamp 2→1). NV indicates that the results of corresponding 
method are larger than the shown RMSE range.
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Figure 5. Prediction performance of different transfer methods for scenario 45 (reactor 1→2). NV indicates that the results of corresponding 
method are larger than the shown RMSE range.

Figure 6. Prediction performance of different transfer methods for scenario 46 (reactor 2→1). NV indicates that the results of corresponding 
method are larger than the shown RMSE range.
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cally easily applicable transfer methods. It is natural to 
raise the question, which of the discussed approaches 
performs best in a specific transfer problem or in general. 
While there is no unique answer to this question yet, we 
summarized the results obtained for scenarios 1-10 and 
39-48 in form of average rank maps, found in Figure 8 to 
Figure 10. In these graphics, we see the average rank of 
methods over all these scenarios (Figure 8), over the cor-
responding lamp scenarios, i.e. 1-10, (Figure 9) and over 
the corresponding reactor+fibre transfer scenarios, i.e. 
39-46 (Figure 10), respectively9. To this end, we studied 
which method yielded the lowest (rank 1), second lowest 
(rank 2), etc RMSEP for a certain scenario, target sample 
selection method and number of available labelled target 
samples. Displaying the average ranks, one gets a gra-
phical impression of the methods performing overly well 
or poorly for a row of transfer problems. As such, it can 
be seen in Figure 8 that, as assumed, the plain application 
of the S model presents generally the worst option. The 
use of TGT performs not much better and is only recom-
mended for a reasonably large number of representative 
target samples (via choice methods Random or Kennard-
Stone). All other methods are usually preferable, where 
AMC and 5T+S appear best. The higher average ranks 
of AMC and MMC in the bottom right corner of the 
KennardStone map can be explained by the fact that the-
se methods do not use any reference values and yield 

relatively constant RMSEPs over all considered num-
bers of available labelled target data therefore (variation 
mostly due to randomized selection of test data). The 
other methods, except from PLAIN, on the contrary, 
make use of these labels and can thereby improve their 
performance with growing labelled target sample size. 
As such, they obtain lower ranks and displace AMC and 
MMC.
In contrast to the overall maps shown in Figure 8, ave-
rage ranks for the lamp specific scenarios, displayed in 
Figure 9, show a certain shortcoming of method LIN. 
As such, it may be beneficial to investigate other me-
thods initially. Above this observation, the maps are 
similar to the overall case.
Figure 10, on the other hand, may lead to the conclusi-
on that LIN appears a valid approach to apply first.
In all settings though, 5T+S appears to be relatively 
high ranked. It can also be observed in these maps as 
well as from the actual RMSEP values that the weighted 
model updating (5T+S) performs generally better than 
normal model updating (T+S), particularly for the more 
interesting areas with small numbers of available la-
belled T data. This makes us believe that an even stron-
ger weighting may be beneficial; thus, such a stronger 
weighting shall be investigated in future work.

Figure 7. Prediction performance of different transfer methods for scenario 47. NV indicates that the results of corresponding method are 
larger than the shown RMSE range.
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Figure 8. Average rank for evaluated methods computed over all scenarios.

Figure 9. Average rank of evaluated methods computed over the lamp change scenarios.

Figure 10. Average rank of evaluated methods computed over the reactor+fibre scenarios.

Conclusions 

Within this contribution we show that a row of rather 
simple transfer approaches can achieve considerable 
improvement of predictions for data from a changed 
setting. The methods introduced and discussed here 
are both easy to comprehend and implement as well 
as application-oriented in the sense that they do not 
assume the availability of transfer standards and re-

quire only a few labelled data in the target space.
Regarding a suitable choice among the proposed me-
thods, average rank maps may provide guidance.
Although the results presented here prove the suitabi-
lity of the investigated straight-forward methods, there 
is still potential for improvement with respect to both, 
prediction accuracy and robustness (regarding the 
choice method as well as the number of available tar-
get samples). Because of this, we intend to investigate 
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further and more sophisticated transfer methods from 
both chemometrics and machine learning in future 
work. To this end, we are currently analysing the trans-
fer OSC technique (Woody, et al., 2004), as well as an 
approach based on a combination of transfer compo-
nent analysis (Pan, et al., 2011) and linear regression. 
Additionally, a more advanced weighting instead of 
the 5T+S approach and a possible idea to develop arti-
ficial transfer standards shall be studied.
Last, but not least, it shall be mentioned that it is not 
yet clear at this point, what role different source samp-
le sizes and calibration settings may play for subse-
quent transfer results. Thus, this question shall also be 
investigated in the future.
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Abstract 

Within the K-project “Process Analytical Chemistry - PAC” key parameters of various industrial production 
processes were monitored by using FTNIR-spectroscopy and chemometrics. In case of melamine-form- 
aldehyde (MF) resin production one of the key parameters is the turbidity point during MF resin condensa-
tion reaction. This parameter is typically determined off-line. In this work a method for in-line monitoring 
the turbidity point was developed and a long-term study was performed. For this purpose, in-line FTNIR 
spectral and off-line analytical measurements were performed for a set of calibration data and used for de-
veloping robust and reliable chemometric models for the turbidity point. Specific models were developed 
for different resin recipes and optimized continuously. The obtained results confirm that, despite recipe-
specific spectral differences, a common model for the turbidity point is applicable for various recipes. The 
developed in-line method was capable of determining the turbidity point with a validated accuracy between 
2.7% and 4.4% depending on the recipe. Thereby, the stopping point of the production process could be 
determined with a maximum time resolution of 8 seconds. Furthermore, the number of manual sampling 
steps could then be reduced significantly depending on the recipe. The chemometric models have to be re-
calibrated rarely, mostly after maintenance operation (e.g. change of the light source).

Keywords: NIR spectroscopy, Partial Least Squares, melamine resin

Introduction

Melamine formaldehyde (MF) resins are among the 
most widely used industrial thermosetting plastic ma-
terials, e.g. in high-pressure laminates for furniture or 
flooring (1). In general, industrially produced MF re-
sins are the result of condensation of melamine with 
formaldehyde in water at a certain temperature, pH 
and solids content (2). As described in (3) the final pro-
duct is prepared in two separated condensation stages. 
During the first stage formaldehyde reacts with mela-
mine in aqueous solution. The obtained pre-condensa-
te mixture consists of the different monomeric as well 
as short linear and branched oligomeric methylolmela-
mine compounds (Figure 1). The most important de-
termining factors for the composition and quality of 
the MF resin are temperature, pH and duration of the 
condensation step as well as the order and time course 

of heating together with reagent addition. In a second 
stage the resin solutions are cured by the application of 
heat and pressure to give an insoluble highly cross-
linked MF resin (Figure 1) (3).
To control the polycondensation progress of melamine and 
formaldehyde and to estimate the end point of the reac-
tion samples are regularly taken and analysed by a water 
tolerance method. For that purpose a certain amount of 
resin solution is placed in a test tube and mixed with a 
certain amount of water and cooled till the sample beco-
mes turbid. This method is a manual procedure based on 
visual inspection, thus influenced by the human factor. 
The obtained values are denoted as turbidity points and 
serve as reference for process control. In order to ensure 
strict control of the resin condensation during the batch 
process an operator is fully occupied with the acquisition 
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of turbidity points. In order to make better use of human 
resources and to reduce sampling errors an in-line ana-
lytical method was developed.
There are several reasons for choosing Fourier-trans-
form near-infrared (FTNIR) spectroscopy in combi-
nation with multivariate data analysis for this applica-
tion. This method combination offers a fast 
quantitative and qualitative, as well as non-destructi-
ve and reagent-free analysis of liquids. Furthermore, 
NIR spectroscopy can be implemented with relatively 
small effort in existing control systems for process 
monitoring and quality control (4). 
 
Materials and Methods 

Measurement Equipment
At the production plant a commercial FTNIR-spectro-
meter (i-RED Infrarot Systeme, Austria) (5) and two 
NIR transmission immersion probes with a 1 mm 
measurement gap connected via fiber optics (32 m di-
stance) and an optical multiplexer (Leoni, Germany) 
have been installed (Figure 2). Along with spectral 
data additional parameters such as process tempera-
ture and pressure are recorded via a CANopen® field-
bus connection to the process control system. 

Spectral	Data	and	Reference	Values
Spectroscopic data of several recipes of MF resin are 
continuously collected in-line at the production plant 
(Figure 3). At the same time, the corresponding refe-
rence values (i.e. turbidity point) were collected by 
several qualified operators – up to nine values per 
batch. Assignment of reference values acquired by 

off-line analysis to the measured spectral data is 
achieved by a signal input which is manually actuated 
by the operator. For each reference point three corres-
ponding spectra are assigned which are collected 
within a time period of 24 seconds.
During these measurements the single beam spect-
rum, i.e. the transmitted light intensity was used as 
raw data instead of the absorption spectrum. Thus, 
obtained data contains characteristics of the light 
source and MF resin. This approach was found to de-
liver best results in subsequent data analysis. 

Figure 1. Reaction scheme of MF resin condensation.

Figure 2. Schematic diagram of the implemented FTNIR in-line 
measurement.
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Data Analysis
The analysis of spectra and chemometric modeling on 
calibration data was performed using Partial Least 
Squares (PLS) regression analysis (Matlab (Ma-
thworks) and PLS-Toolbox (Eigenvector Research)). 
Spectral pre-processing included Savitzky-Golay 
(SG) filtering and standard normal variate (SNV) sca-
ling. This pre-processing approach was defined after 
extensive investigations of several MF-resin recipes 
and production batches. The accuracy of spectrosco-
pic/chemometric prediction of the turbidity point 
strongly depended on the selection of relevant spect-
ral regions which were identified and optimized du-
ring model calibration. Finally, the calibration results 
were validated by cross-validation (CV) before a spe-
cific model was implemented in-line. The chemomet-
ric evaluation of the measured spectral data was per-
formed on the spectrometer by the software chemo 
engine (6). The results were provided in real time to 
process control system. 

Results	and	Discussion	

Chemometric Models
Satisfying correlations (R2) between manually deter-
mined reference values (turbidity points) and spectral 
features of MF resin could be confirmed by PLS-ana-
lysis (Figure 4). Application of defined pre-processing 
methods and choosing of relevant spectral regions tur-
ned out crucial to achieve a well-functioning model. A 
significant amount of spectral data from several bat-
ches was necessary to get reasonably stable calibrati-
on models. This was owed to the rough industrial 
measurement environment at the production site. To 
minimize time consuming re-calibration, the focus of 
modelling was set on the long-term stability of the 
chemometric models. Concerning the different MF-
resin recipes it was found that the more rarely produ-
ced recipes show better accuracy when applying an 
overarching model created using data from several 
similar recipes instead a recipe-specific model. This 
effect was ascribed to varying measurement condi-
tions, involving cleaning steps of the production reac-
tor. Such effects are modelled best, if a larger calibra-
tion set is available. An additional advantage of an 
overarching model is the shorter down-time of the 
method, required for collection of spectral data and 
reference values. For frequently produced MF resins 
there is no relevant difference in accuracy between 
recipe-specific models and the overarching model 
(Table 1). The achieved model prediction accuracy 
was validated by manually taken reference values and 
is either given by the root mean square error of cross-
validation (RMSECV) or by the RMSE of prediction 
(RMSEP). The latter is obtained by an independent 
validation data set. Typical values of RMSECV and 
RMSEP were found to be in the range of 2.7% - 4.4%, 
which is highly satisfactory for the considered pro-

Figure 3. Typical NIR single beam intensity (top) and absorption 
spectra (bottom) of MF resin collected at the production plant.

Figure 4. Result of cross-validation for the overarching model for 
four similar products (recipes).
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cess. Therefore, the method was found to be suitable 
for practical use in in-line process monitoring. Con-
cerning the RMSECV and RMSEP values it has to be 
noted, that the chemometric models were validated 
with the reference method. In the present case the me-
thod error of the reference method (water tolerance 
test) was approximately 2%.   
 
Long-term Stability
The established models have been in use for routine 
process monitoring over a period of six months. The 
so achieved turbidity points were provided to the pro-
cess control system. The long-term accuracy was ge-
nerally satisfying, except for short periods in which 
not yet known disturbances occurred (Figure 5). The 
amount of manual samplings per batch could be signi-
ficantly reduced per batch. In some periods even a 
single manual measurement per batch was sufficient. 
As long as the obtained prediction error was within 

the confidence interval the end point of condensation 
was determined by in-line values only. In certain pro-
duction batches the condensation process was fully 
controlled based on in-line values of the turbidity 
point. No negative influence on the quality of MF re-
sins was observed.

Robustness
For industrial routine monitoring high robustness of 
the chemometric model is essential. Several effects on 
the in-line measurement, which have an influence on 
the robustness of the prediction model, were obser-
ved. These influences include, e.g., a slow continuous 
decrease of the light source intensity of the spectra 
(calculated as integral of the spectrum, see Figure 6). 
However, by using a larger calibration data set, which 
included the decrease of light intensity, adverse ef-

Table 1. Calibration und prediction results of chemometric modelling for several recipes. Comparison includes both model types: overar-
ching and recipe-specific.

Figure 5. Trend of the prediction error of the turbidity point (calcu-
lated as RMSEP per batch) between 14.07.2014 and 12.11.2014.

Figure 6. Typical trend of decreasing intensity of light source over 
time. The negative spikes have no relevance for the measurement. 
They appear before and after the condensation, mainly due to tem-
perature variation.
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fects on model robustness can be very well covered. 
Even if the light intensity during validation is signi-
ficantly lower than in calibration data. Intensity los-
ses on a much shorter time scale were also observed, 
which were caused by undissolved particles blocked 
in the measuring gap of the in-line probe. In most 
cases of such events the models are vulnerable. Typi-
cally, there occurs an offset in the prediction. The 
same effect is observed after the change of the light 
source during annual maintenance (Figure 7). This 
can be corrected very quickly by using a simple off-
set correction, but for the longer term it is needed to 
recalibrate the model. This can be done later after a 
sufficient amount of new spectral data and related 
reference values were acquired. Very high sensitivity 
towards changes in the light intensity is related to 
low signal-to-noise ratio and small changes of the 
spectral features due to degree of condensation. In 
addition, permanently changing interference effects 
arising from the optical multiplexer when switching 
between measurement channels reduce the accuracy 
of the model. Although the latter effect has a rather 
low influence on model accuracy, it is difficult to 
correct. 

Influence	of	Temperature
Temperature is one of the main factors influencing 
spectral data. The MF-resin condensation process is 
characterized by a well-defined temperature profile 
that has to be followed to achieve the desired product 
parameters. In the investigated process two different 
temperature profiles were applied – a standard profile 
and a customized profile (Figure 8). Figure 8During 
the time of model evaluation, it was confirmed that 
spectra as well as model predictions for a certain 
batch are highly dependent on the temperature profile 
used during the process. As a consequence a tempera-
ture correction method, that should compensate the 
difference between the profiles, was developed. A dis-
advantage associated with the variation in the tempe-
rature profile was a higher risk in end point determi-
nation of the condensation process. However, it was 
possible to minimize this risk due to the much tighter 
monitoring of the turbidity point by in-line FTNIR 
measurements.

 
Conclusions 

We presented various aspects of developing and im-
plementing FTNIR measurements in combination 
with multivariate data modelling in a chemical batch 
process for MF resin production. Challenges, such as 
cleaning steps, decreasing light source intensity or 
temperature influence on the modelling results were 
identified and corrected. In conclusion it was proven 
that the developed chemometric models are capable 
of achieving satisfactory predictions of the turbidity 
point – a measure for the end point of the production 
process - over several months. The applied in-line me-
thod offers much tighter process control and reduces 
manual sampling steps which are particularly prone to 
errors. The operators, which are usually fully occupi-

Figure 7. Effect of light source replacement on the integral intensi-
ty of single beam spectra (top) and prediction accuracy of chemo-
metric model (bottom).

Figure 8. Differences between temperature profiles of MF resin 
production.
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ed with manual turbidity point determination, could 
perform other monitoring activities during condensa-
tion process, thereby enabling a better use of human 
resources. Furthermore, the method allowed to moni-
tor the stop-condition automatically in an objective 
way without interaction of personnel. 
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Abstract 

In viscose fibre production degradation reactions of cellulose and hemicelluloses do occur. Degradation 
products from the alkaline degradation steps, i.e. steeping and pre-ageing, are apparently diverted into the 
acidic spin bath, where they undergo further reactions. Although the primary degradation products are well 
characterised, further reactions of these degradation products are hardly investigated. We tested the reacti-
vity of degradation products under conditions, which prevail in the acidic spinning media of the viscose 
process. The studied chemical species were xylose, glucose, isosaccharinic acid, lactic acid and glycolic 
acid. We found strong indications that intermediate products, such as furfural and derivatives thereof, are 
formed, which readily polymerize and yield solid deposits. We showed that xylose, glucose and isosaccha-
rinic acid trigger the subsequent formation of precipitants. Among the model compounds studied, xylose 
formed solid deposits most rapidly. The promoting effect of hydrogen sulfide on the formation of deposits 
was verified as well. Suspended solid particles act as crystallization points.

Keywords: Viscose, deposits, cellulose degradation, glucose, xylose, isosaccharinic acid, lactic acid, glycolic acid, furfural

Introduction

In viscose fibre production cellulose is subject to a se-
quence of chemical conversion processes. Initially the 
cellulose is steeped with sodium hydroxide lye, which 
activates cellulose and affords the so-called alkali cel-
lulose. The alkali cellulose is pre-aged with the aim to 
adjust the molar mass of the cellulose. The aged alkali 
cellulose is then xanthogenated by reaction with car-
bon disulfide. The xanthogenate groups facilitate the 
dissolution of the cellulose in caustic lye. A viscous 
mass is obtained, the so called viscose dope. This dope 
is spun into the acidic spin bath. The xanthogenate 
groups are decomposed, carbon disulfide is released 
and the cellulose precipitated in the form of viscose 
fibres. Then the fibre is thoroughly washed, cut,  
after-treated and dried.

These harsh chemical conditions cellulose is exposed 
to cause some degradation of the polysaccharidic ma-
terial. The degradation reactions which occur under 
alkaline conditions are well known1-5. Degradation re-
actions in acidic media are reported in literature as 
well6-8. However, the chemical behaviour of the degra-
dation products in the viscose process have hardly 
been an issue up to now although the degradation pro-
ducts accumulate in the closed and recycled process 
streams having an important impact on the viscose  
fiber product quality. 
Degradation reactions occur mostly during alkaline stee-
ping and the subsequent pre-ageing of the alkali cellulo-
se. In principle three different cellulose degradation me-
chanisms can be discerned under alkaline conditions9,10:
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 End-wise degradation (peeling)
 Alkaline chain scission
 Aerobic (oxidative) alkaline degradation
These mechanisms can be differentiated by the condi-
tions, under which they occur, and the resulting degra-
dation products. The end-wise degradation (peeling) 
(Figure 1) does not involve air (oxygen) and typically 
occurs at moderate temperatures. In the peeling reac-
tion, the anhydroglucose unit is split off (peeled off) 
one by one starting from the reducing sugar end. Initi-
ally in the open-ring structure the carbonyl group 
moves from position 1 to position 2 of the glucose unit 
in an Alberda-van-Eckenstein-Lobry-de-Bruin trans-
formation (EBT)11. After deprotonation of the enol hy-
droxyl group an alkoxy-group can be easily eliminated 
from the beta-position of the enolate. The polysaccha-
ride chain is eliminated from the C4-atom by this beta-
alkoxy elimination (see Figure 1). A vicinal dicarbonyl 
compound, 4-deoxy-D-glycero-2,3-hexodiulose9, 10 is 
yielded.
Under alkaline conditions the obtained dicarbonyl 
compound undergoes further reactions. Most impor-
tant is a benzylic acid rearrangement yielding iso- and 
meta-saccharinic acid9, 10. The meta-saccharinic acid is 
obtained via a benzylic acid rearrangement of 4-de-
oxy-D-glycero-1,2-hexodiulose, which is formed from 
4-deoxy-D-glycero-2,3-hexodiulose by an EBT. The 
formation of glucoisosaccharinic acid is depicted in 
Figure 2. A retro-aldol reaction yields products of lo-
wer mass (Figure 3)9, 12. A number of degradation pro-
ducts was found, and not all formation mechanisms of 
them are clear. Beside meta- and iso-saccharinic acids, 
lactic acid and 2,3-dihydroxypropanoic acid are typi-
cal degradation products9. 
The alkaline scission occurs only at elevated tempera-
tures, above 170°C9, 10. It is a hydrolytic scission of 
glycosidic bonds, catalysed by high hydroxyl ion con-
centrations. It requires conformational changes from 
the 4C1 into the 1C4 chair conformation, which is only 
possible at higher temperatures10. In principle every 
glycosidic bond in the polysaccharide chain can be 
cleaved this way. As a consequence, fragments of lar-
ger molecular mass are formed, from oligomeric to 
polymeric size.
The aerobic (oxidative) alkaline degradation mechanism 
takes place in the presence of air and oxygen. By oxida-
tion, a carbonyl group is formed on an anhydroglucose-
unit, which in turn immediately leads to chain scission 
under alkaline conditions. This happens again by beta-
alkoxy elimination (compare Figure 1), which in cont-
rast to the endwise peeling might occur anywhere along 
the chain, wherever an oxidized groups has been intro-
duced before. As a result fragments of oligomeric to po-
lymeric character are formed.

The degradation mechanisms described are not only 
affecting cellulose but also hemicellulose, for instance 
xylan from hardwood.  
The acidic degradation of cellulose proceeds accor-

Figure 1. The splitting off of a reducing sugar by the Peeling reac-
tion. Via a beta-alkoxy elimination the 4-deoxy-D-glycero-2,3-hexo-
diulose is formed.

Figure 2. Reaction of 4-deoxy-D-glycero-2,3-hexodiulose to gluco-
isosaccharinic acid via benzylic acid rearrangement (BAR). Gluco-
metasaccharinic is generated from 4-deoxy-D-glycero-1,2-hexodi-
ulose by an analogous benzylic acid rearrangement.
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ding to a typical hydrolytic reaction mechanism. At 
first the oxygen atom of the glycosidic bond is proto-
nated. The bond to the adjacent C1 atom breaks, for-
ming a carbenium ion which is attacked by a water 
molecule in the next step. After the release of a proton 
a neutral glucose unit and a neutral residual cellulose 
chain is formed12. Monomeric glucose units are predo-

minantly formed. Oligomeric fragments scarcely 
emerge due to the kinetics of bond scission13. How-
ever, it is not clear, which role acidic degradation plays 
in the viscose process, as the cellulose and the fibre, 
respectively, remain only a few seconds in the acidic 
spin bath during the spinning step. The extent of de-
gradation depends, besides the chemical matrix (pH, 
oxygen access) and the temperature also on the super-
molecular structure of cellulose. The accessibility of 
the cellulose chains with regard to degrading agents, 
for instance the OH- anion, is essential. Thus the pa-
cking and crystallinity of cellulose plays a key role for 
the extent of degradation9. The more accessible the 
cellulose packing is for the degrading reagent, the fas-
ter the degradation is. 
The alkaline degradation mechanisms play a role – as 
mentioned – predominantly during the steeping of 
pulp, the aging of alkali cellulose and within the corre-
sponding lyes. The steeped pulp is pressed to yield the 
alkali cellulose. The lye, separated from the pulp slur-
ry, is recycled. One part is used for repeated steeping, 
another part of this lye is used for the dissolution of the 
xanthogenated cellulose, which yields the viscose 
dope. Since the viscose dope is spun into the spinning 
bath, the alkaline degradation products end up in the 
acidic spinning bath. This change of the chemical pro-
perties of the matrix is able to induce chemical reac-
tions and conversions of the degradation products.
It is well known that sugars dehydrate to furan derivati-
ves under acidic conditions at higher temperatures. Xy-
lose reacts to furfural14 (Figure 4) whereas glucose is 
converted to hydroxymethylfurfural15 (Figure 5). Both 
reactions might occur in the acidic spin bath of the vis-
cose process. The monomeric sugars can be formed 
from acidic degradation reactions of hemicellulose and 
cellulose fragments, which are soluble in the acidic spin 
bath. Polysaccharides, which are not soluble, cannot act 
as source. They reside in the spin bath only for a few 
seconds during the spinning step. However, fragments 
from polymeric polysaccharides, which are formed for 
instance by alkaline oxidations during ageing, might be 
of such low molecular mass that they dissolve in the 
acidic spinning bath. Due to recycling of the spin bath 
longer residence times result, upon which those soluble 
oligomers are likely to be hydrolysed to monomers.
It is well-established that furfural and its derivatives 
readily polymerize to insoluble molecular species16-18, 
which precipitate and form deposits. The occurrence of 
deposits in the spin bath circuits of industrial facilities 
can be observed indeed. These deposits are objectiona-
ble for production since in the staple fibre they are det-
rimental for product quality. The formation of furfural 
and its derivatives from cellulose degradation products 
is one possible reason for the formation of those depo-

Figure 3. Decomposition of 4-deoxy-D-glycero-2,3-hexodiulose (on 
the left-top) via Retro-Aldol reaction. BAR…Benzylic acid rearran-
gement.

Figure 4. Reaction mechanism for the formation of furfural from 
xylose by proton catalysed dehydration.14

Figure 5. Formation of 4-hydroxymethylfurfural from glucose via 
isomerisation to fructose.15
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sits. It is unknown, which degradation products form 
deposits. Furthermore it is not clear, if degradation pro-
ducts of cellulose or hemicellulose can form precipita-
tes under the conditions prevailing in the acidic spin 
bath. In deliberate furfural production, for instance, 
temperatures above 150°C are used14, 16; temperatures 
which are never reached in the viscose spin bath. In this 
paper we present results, which indicate that the forma-
tion of furfural and its derivatives plays indeed a key 
role for the occurrence of deposits. We further limited 
the bandwidth of degradation products leading to preci-
pitates. As product quality builds the centre of interest, 
a number of factors i.e. the influence of hydrogen sulfi-
de and suspended solids, were studied with regard to 
deposit formation in the viscose process.

Materials and Methods

In the first step we checked, if and in particular which 
hemicellulose degradation products form solid conta-

minations under industrial process conditions. There-
fore the conditions in the acidic viscose spin bath have 
been simulated in the laboratory. A solution, analogous 
to the spin bath, has been heated for a defined time. 
100 mL of a laboratory prepared spin bath, i.e. an 
aqueous solution containing H2SO4, ZnSO4 and Na2SO4, 
was heated to 90°C. The chemical species xylose, glu-
cose, glucoisosaccharinic acid, lactic acid and glycolic 
acid, which are known to be cellulose or hemicellulose 
degradation products9, were added at defined concent-
rations. If not stated otherwise, 500 mg were dissolved 
in 100 mL, resulting in a concentration of 5 g/L. Sam-
ples were taken for analysis by UV-Vis spectroscopy 
with an Agilent 5483 instrument. After heating at the 
elevated temperature of 90°C for 72 h the solid preci-
pitants formed were separated, sucked off via a suction 
filter, dried and weighted.

Results	and	Discussion

During the thermal impact experiments with addition 
of xylose, glucose and glucoisosaccharinic acid to a 
simulated spinning bath the colour of the reaction so-
lution turned yellow. In case of lactic acid and glycolic 
acid no such colouring was observed. We noticed a 
distinct absorption band around 280 nm. For xylose 
the absorption band was exactly located at 278 nm and 
for glucose at 285 nm. In the visible region a broad, 
undefined absorption over the whole wavelength area 
evolved. The colouring of the reaction solution as well 
as the intensity of the band increased with continued 
heating. Therefore we assigned the band around 280 nm 
to a primary degradation product. Furfural absorbs at 
280 nm as well. This indicates that the first degradati-
on product of xylose, which is formed at a temperature 
of 90°C, is furfural, which is in accordance with the 
hypothesis derived from literature14, 16, 19-21. The slight 
difference of 2 nm between the absorption maximum 
of the xylose conversion product and the absorption 
maximum of furfural might be caused by side pro-
ducts. The absorption of the glucose degradation pro-
duct at 285 nm is probably mainly derived from 4-hy-
droxymethylfurfural. Figure 6 shows absorption bands 
of the glucose degradation product, the xylose degra-
dation product and furfural in comparison.
Furthermore the progress of the formation of furfural 
or 4-hydroxymethylfurfural was tracked by the increa-
se of the absorption intensity with time. The increase 
of this band (~280 nm) within the first 2.5 hours of the 
reaction is depicted in Figure 7. It is obvious, that the 
increase for xylose is much faster than for glucose. 
The analogous spectroscopic investigations for gluco-
isosaccharinic acid will be performed in a subsequent 
study.

Figure 6. Comparison of UV-spectra of degradation products of xy-
lose and glucose with the spectrum of furfural.

Figure 7. Increase of the UV-absorption band at ~280 nm after  
different times at the elevated temperature of 90°C in synthetic vis-
cose spin bath. 



LENZINGER BERICHTE 92 (2015)     53 – 58

57

The thermal impact experiments applying xylose, glu-
cose and glucoisosaccharinic acid resulted in the for-
mation of solid dark precipitants. In case of lactic acid 
and glycolic acid no formation of solids was detected 
by thermal impact experiments. This is in agreement 
with the hypothesis, that the solid deposits are formed 
via furfural and its derivatives. The increase of the UV-
band at ~280 nm indicates that xylose degrades faster 
than glucose. In connection with the hypothesis, that 
the solids are formed by polymerization reactions from 
furfural (and its derivatives) it could be hypothesized, 
that xylose also forms solid deposits faster than gluco-
se. In order to verify this hypothesis we carried out 
thermal impact experiments with an initial concentra-
tion of 20 g/L of xylose, glucose or glucoisosacchari-
nic acid and a total volume of 100 mL. After heating to 
90°C for 72 h we measured 218 mg deposits for xylo-
se, 46 mg for glucose and 16 mg for glucoisosacchari-
nic acid (Figure 8). This supports our hypothesis that 
xylose degrades and forms solid deposits faster than 
glucose and glucoisosaccharinic acid. We assume that 
the initial isomerization step required for furan forma-
tion is faster in the case of xylose as compared to  
glucose.
Besides the chemical degradation of polysaccharides 
discussed so far, also hydrogen disulfide present in the 
spin bath of the industrial process might play an im-
portant role. Hydrogen disulfide is released via a side 
reaction during the de-xanthogenation in the spinning 
step. Considering furfural formation as formulated in 
Figure 4 and the nucleophilic character of the sulfide 
ion the question arises, if the sulfide ion could partici-
pate in the reaction. In order to answer that question 
we carried out thermal impact experiments with xylo-
se as test species (5 g/L or 33.3 mmol/L, 100 mL 
batch) with and without the addition of hydrogen sul-
fide. 0.64 mol of gaseous H2S were discharged into 
the reaction mixture (of 100 mL) during the first two 

hours. The experiment without hydrogen disulfide 
yielded 80 mg solid deposits after 72 hours whereas 
the experiment with hydrogen disulfide yielded 118 mg. 
This represents a significant increase by 38 mg and 
proves that hydrogen disulfide promotes the precipita-
te formation. The participation of sulfide ions in the 
reactions of the organic species is only one possibility, 
the sulfide could affect the formation of solids. Raman 
spectra of the formed precipitate proved, that elemen-
tal sulphur is formed under the test conditions as  
well. 
In a further set of experiments we hypothesized if the 
presence of solids accelerates the formation of solid 
precipitants. In order to verify this hypothesis, we 
performed three separate thermal impact experi-
ments, with xylose as source material, and with the 
addition of 100 mg of fine particles of silicon dioxide 
and activated carbon in two separated experiments. 
In order to determine the mass of the formed precipi-
tates, from the mass of total solids filtered off after 
the thermal impact experiment the mass of initially 
added particle material was subtracted. The yield of 
solid precipitates of 80 mg was increased to 95 mg by 
silicon dioxide and to 131 mg by activated carbon. 
Since an increase is obtained with both, very diffe-
rent particle materials, we concluded that particles in 
the solution somehow act as seed nuclei. The dis-
tinctly higher increase by activated carbon probably 
is owed to its high effective surface area and surface 
structure. The determined mass of precipitates in the 
case of addition of activated carbon as well might be 
increased by material, absorbed by the activated  
carbon. 

Conclusions

The concept of thermal impact experiments in viscose 
spin bathes proved to be a valuable tool for the inves-
tigation of reactions of dissolved cellulose degradation 
products under process conditions. The situation in the 
acidic spin bath of industrial production was simula-
ted. We tested the degradation products xylose, gluco-
se, glucoisosaccharinic acid, lactic acid and glycolic 
acid for their reactivity in acidic media. UV spectra of 
initially soluble degradation products of xylose and 
glucose supported the hypothesis that furfural or a de-
rivative thereof is formed. Extended reaction time of 
72 h at 90°C lead to solid precipitates from xylose, 
glucose and glucoisoccharinic acid. Upon applying 
xylose the highest amount of precipitates was formed. 
Lactic acid and glycolic acid do not undergo any 
further reaction. This is in accordance with the hypo-
thesis that further reactions proceed via furfural (and 
its derivatives). 

Figure 8. Mass of precipitates formed after the heating to 90° C for 
72 h. Data are presented for xylose, glucose and glucoisosacchari-
nic acid. The experiments were conducted with equal concentrations 
and reaction volumes. The experiments were conducted with equal 
concentrations and reaction volumes.
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We were also able to prove, that hydrogen sulfide  
promotes the formation of solid deposits. This is of re-
levance, as hydrogen sulfide is released by a side reac-
tion during the spinning step of the viscose process. 
Solids, suspended in an acidic reaction medium, pro-
mote the formation of solid contaminants as well.
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